
BaCon 4.7.2 documentation

Introduction
BaCon is an acronym for BAsic CONverter. The BaCon BASIC converter is a tool to convert
programs written in BASIC syntax to C. The resulting C code can be compiled using generic C
compilers like GCC or CC. It can be compiled using a C++ compiler as well.
BaCon intends to be a programming aid in creating small tools which can be compiled on different
Unix-based platforms. It tries to revive the days of the good old BASIC.
The BaCon converter passes expressions and numeric assignments to the C compiler without
verification or modification. Therefore BaCon can be considered a lazy converter: it relies on the
expression parser of the C compiler.

BaCon usage and parameters
To use BaCon, download the converter package and run the installer. The converter can be used as
follows:
 bash ./bacon.sh myprog.bac
Note that BASH 4.x or higher is required to execute the Shell script version of BaCon.
By default, the converter will refer to '/bin/bash' by itself. It uses a so-called 'shebang' which allows
the program to run standalone provided the executable rights are set correctly. This way there is no
need to execute BaCon with an explicit use of BASH. So this is valid:
 ./bacon.sh myprog.bac
Alternatively, also Kornshell93 (releases after 2012) or Zshell (versions higher than 4.x) can be
used:
 ksh ./bacon.sh myprog.bac
 zsh ./bacon.sh myprog.bac
All BaCon programs should use the '.bac' extension. But it is not necessary to provide this extension
for conversion. So BaCon also understands the following syntax:
 ./bacon.sh myprog
Another possibility is to point to the URL of a BaCon program hosted by a website. The program
will then be downloaded automatically, after which it is converted:
 ./bacon.sh http://www.basic-converter.org/fetch.bac

The BaCon Basic Converter can be started with the following parameters.
• -c: determine which C compiler should create the binary (defaults to 'gcc')
• -l: pass a library to the C linker
• -o: pass a compiler option to the C compiler
• -i: the compilation will use an additional external C include file
• -d: determine the directory where BaCon should store the generated C files (defaults to the

current directory)
• -x: extract gettext strings from generated c sources
• -z: allow the usage of lowercase statements and functions

http://en.wikipedia.org/wiki/BASIC_programming_language
http://en.wikipedia.org/wiki/Shebang_(Unix)

• -e: starts the embedded ASCII editor
• -f: create a shared object of the program
• -n: do not compile the C code automatically after conversion
• -y: suppress warning about temporary files if these exist
• -j: invoke C preprocessor to interpret C macros which were added to BaCon source code
• -p: do not cleanup the generated C files (default behavior is to delete all generated C files

automatically)
• -q: suppress line counting during conversion and only show summary after conversion
• -r: convert and execute the resulting program in one step
• -s: suppress warnings about semantic errors
• -w: store command line settings in the configuration file ~/.bacon/bacon.cfg. This file will

be used in subsequent invocations of BaCon (not applicable for the GUI version)
• -v: shows the current version of BaCon
• -h: shows an overview of all possible options on the prompt. Same as the '-?' parameter

The shell script implementation can convert and compile the BaCon version of BaCon. This will
deliver the binary version of BaCon which has an extremely high conversion performance. On
newer systems, the average conversion rate usually lies above 10.000 lines per second.
This documentation refers both to the shell script and binary implementation of BaCon.
Here are a few examples showing the usage of command line parameters:

• Convert and compile program with debug symbols: bacon -o -g program.bac
• Convert and compile program, optimize and strip: bacon -o -O2 -o -s program.bac
• Convert and compile program and export functions as symbols: bacon -o -export-dynamic

yourprogram.bac
• Convert and compile program using TCC and export functions as symbols: bacon -c tcc -o -

rdynamic yourprogram.bac
• Convert and compile program forcing 32bit and optimize for current platform: bacon -o -

m32 -o -mtune=native yourprogram.bac
• Convert and compile program linking to a particular library: bacon -l somelib program.bac
• Convert and compile program including an additional C header file: bacon -i header.h

yourprogram.bac
• Store compile options permanently: bacon -w -l tcmalloc -o -O2 program.bac (subsequent

invocations of BaCon will now always use the mentioned options)

Most of the aforementioned options also can be used programmatically by use of the PRAGMA
keyword.

General syntax
BaCon consists of statements, functions and expressions. Each line should begin with a statement.
A line may continue onto the next line by using a space and the '\' symbol at the end of the line. The
LET statement may be omitted, so a line may contain an assignment only. Expressions are not
converted, but are passed unchanged to the C compiler (lazy conversion).
BaCon does not require line numbers. More statements per line are accepted. These should be
separated by the colon symbol ':'.

All keywords must be written in capitals to avoid name clashes with existing C keywords or
functions from libc. Keywords in small letters are considered to be variables unless the '-z'
command line option is specified, in which case BaCon tries to parse lowercase keywords as if they
were written in capitals. Note that this may lead to unexpected results, for example if the program
uses variable names which happen to be BaCon keywords.
Statements are always written without using brackets. Functions however must use brackets to
enclose their arguments. Functions always return a value or string, contrary to subs. Functions
created in the BaCon program can be invoked standalone, meaning that they do not need to appear
in an assignment.
Subroutines may be defined using SUB/ENDSUB and do not return a value. With the
FUNCTON/ENDFUNCTION statements a function can be defined which does return a value. The
return value must be explicitly stated with the statement RETURN.
The three main variable types in BaCon are defined as STRING, NUMBER and FLOATING.
These are translated to char*, long and double.
A variable will be declared implicitly when the variable is used in an assignment (e.g. LET) or in a
statement which assigns a value to a variable. By default, implicitly declared variables are of 'long'
type. This default can be changed by using the OPTION VARTYPE statement. Note that implicitly
declared variables always have a global scope, meaning that they are visible to all functions and
routines in the whole program. Variables which are used and implicitly declared within a SUB or
FUNCTION also by default have a global scope. When declared with the LOCAL statement
variables will have a scope local to the FUNCTION or SUB.
In case of implicit assignments, BaCon assumes numeric variables to be of long type, unless
specified otherwise with OPTION VARTYPE. Also, it is possible to define a variable to any other
C-type explicitly using the DECLARE and LOCAL statements.
Next to this, BaCon accepts type suffixes as well. For example, if a variable name ends with the '$'
symbol, a string variable is assumed. If a variable name ends with the '#' symbol, a float variable is
assumed. If a variable name ends with the '%' symbol, it is considered to be an integer variable. The
type suffixes also can be used when defining a function name.

Mathematics, variables
The standard C operators for mathematics can be used, like '+' for addition, '-' for subtraction, '/' for
division and '*' for multiplication. For the binary 'and', the '&' symbol must be used, and for the
binary 'or' use the pipe symbol '|'. Binary shifts are possible with '>>' and '<<'.

C operator Meaning C Operator Meaning

+ Addition | Inclusive or

- Subtraction ^ Exclusive or

* Multiplication >> Binary shift right

/ Division << Binary shift left

& Binary and

Variable names may be of any length but may not start with a number or an underscore symbol.

Equations
Equations are used in statements like IF...THEN, WHILE...WEND, and REPEAT...UNTIL. In
BaCon the following symbols for equations can be used:

Symbol Meaning Type

0 Equal to String, numeric

!=, <> Not equal to String, numeric

> Greater than String, numeric also allows GT

< Less than String, numeric also allows LT

>= Greater or equal String, numeric also allows GE

<= Less or equal String, numeric also allows LE

EQ, IS Equal to Numeric

NE, ISNOT Not equal to Numeric

AND, OR Logical and,or String, numeric

BETWEEN In between String, numeric

BEYOND Outside String, numeric

EQUAL() Equal to String

The BETWEEN and BEYOND keywords
When using equations in WHILE, IF, REPEAT, IIF or IIF$ it often happens that a check needs to
be performed to see if a certain value lies within a range. For this purpose, BaCon accepts the
BETWEEN comparison keyword. For example:
IF 5 BETWEEN 0;10 THEN PRINT "Found"
This comparison will return TRUE in case the value 5 lies within 0 and 10. The comparison will
include the lower and upper boundary value during evaluation. Note that the lower and upper values
are being separated by a semicolon. Alternatively, the keyword AND may be used here as well:
IF 5 BETWEEN 0 AND 10 THEN PRINT "Found"
Note that this may lead to confusing constructs when adding more logical requirements to the same
equation.
The BETWEEN comparison also accepts strings:
IF "C" BETWEEN "Basic" AND "Pascal" THEN PRINT "This is C"
The order of the mentioned range does not matter, the following code will deliver the exact same
result:
IF "C" BETWEEN "Pascal" AND "Basic" THEN PRINT "This is C"
In case the boundary values should be excluded, BaCon accepts the optional EXCL keyword:
IF variable BETWEEN 7 AND 3 EXCL THEN PRINT "Found"
The last example will print "Found" in case the variable lies within 3 and 7, values which
themselves are excluded.
Similarly, to check if a value lies outside a certain range, the keyword BEYOND can be used:
IF 5 BEYOND 1 AND 3 THEN PRINT "Outside"
Note that in case of the BEYOND keyword the boundary values themselves are considered to be

part of the outside range. The same EXCL keyword can be used to exclude them.

Indexed arrays

Declaration of static arrays
An array will never be declared implicitly by BaCon, so arrays must be declared explicitly. This can
be done by using the keyword GLOBAL or DECLARE for arrays which should be globally visible,
or LOCAL for local array variables.
Arrays must be declared in the C syntax, using square brackets for each dimension. For example, a
local string array must be declared like this: 'LOCAL array$[5]'. Two-dimensional arrays are
written like 'array[5][5]', three-dimensional arrays like 'array[5][5][5]' and so on.
In BaCon, static numeric arrays can have all dimensions, but static string arrays cannot have more
than one dimension.

Declaration of dynamic arrays
Also dynamic arrays must be declared explicitly. To declare a dynamic array, the statements
GLOBAL or LOCAL must be used together with the ARRAY keyword, which determines the
amount of elements. For example, to declare a dynamic array of 5 integer elements: 'LOCAL array
TYPE int ARRAY 5'.
The difference with a static array is that the size of a dynamic array can declared using variables,
and that their size can be redimensioned during runtime. The latter can be achieved with the
REDIM statement. This is only possible for arrays with one dimension.
As with static numeric arrays, also dynamic numeric arrays can have all dimensions, and dynamic
string arrays cannot have more than one dimension. The syntax to refer to elements in a dynamic
array is the same as the syntax for elements in a static array.

Dimensions
Static arrays must be declared with fixed dimensions, meaning that it is not possible to determine
the dimensions of an array using variables or functions, so during program runtime. The reason for
this is that the C compiler needs to know the array dimensions during compile time. Therefore the
dimensions of an array must be defined with fixed numbers or with CONST definitions. Also, the
size of a static array cannot be changed afterwards.
Dynamic arrays however can be declared with variable dimensions, meaning that the size of such
an array also can be expressed by a variable. Furthermore, the size of a one dimensional dynamic
array can be changed afterwards with the REDIM statement. This statement also works for
implicitly created dynamic arrays in the SPLIT and LOOKUP statements.
By default, if an array is declared with 5 elements, then it means that the array elements range from
0 to 4. Element 5 is not part of the array. This behavior can be changed using the OPTION BASE
statement. If OPTION BASE is set to 1, an array declared with 5 elements will have a range from 1
to 5.
The UBOUND function returns the dimension of an array. In case of multi-dimensional arrays the
total amount of elements will be returned. The UBOUND function works for static and dynamic
arrays, but also for associative arrays.

Passing arrays to functions or subs
In BaCon it is possible to pass one-dimensional arrays to a function or sub. The caller should
simply use the basename of the array (so without mentioning the dimension of the array).
When the function or sub argument mentions the dimension, a local copy of the array is created.
CONST dim = 2
DECLARE series[dim] TYPE NUMBER
SUB demo(NUMBER array[dim])
 array[0] = 987
 array[1] = 654
END SUB
series[0] = 123
series[1] = 456
demo(series)
FOR x = 0 TO dim - 1
 PRINT series[x]
NEXT
This will print the values originally assigned. The sub does not change the original assignments.
When the function or sub argument does not mention the dimension, but only uses square brackets,
the array is passed by reference.
CONST dim = 2
DECLARE series[dim] TYPE NUMBER
SUB demo(NUMBER array[])
 array[0] = 987
 array[1] = 654
END SUB
series[0] = 123
series[1] = 456
demo(series)
FOR x = 0 TO dim - 1
 PRINT series[x]
NEXT
This will modify the original array and prints the values assigned in the sub.

Returning arrays from functions
In BaCon, it is also possible to return a one dimensional array from a function. This only works for
dynamic arrays, as the static arrays always use the stack memory assigned to a function. This
means, that when a function is finished, also the memory for that function is destroyed, together
with the variables and static arrays in that function. Therefore only dynamic arrays can be returned.
The syntax to return a one dimensional dynamic array involves two steps: the declaration of the
array must contain the STATIC keyword, and the RETURN argument should only contain the
basename of the array without mentioning the dimensions. For example:
FUNCTION demo
 LOCAL array TYPE int ARRAY 10 STATIC
 FOR x = 0 TO 9
 array[x] = x
 NEXT
 RETURN array
END FUNCTION

DECLARE my_array TYPE int ARRAY 10
my_array = demo()
This example will create a dynamic array and assign some initial values, after which it is returned
from the function. The target 'my_array' now will contain the values assigned in the function.
The statements SPLIT, LOOKUP, COLLECT, PARSE and MAP also accept the STATIC
keyword, which allows the implicitly created dynamic array containing results to be returned from a
function.
Note that when returning arrays, the assigned array should have the same dimensions in order to
prevent memory errors.

Associative arrays

Declaration
An associative array is an array of which the index is determined by a string, instead of a number.
Associative arrays use round brackets '(...)' instead of the square brackets '[...]' used by normal
arrays.
An associative array can use any kind of string for the index, and it can have an unlimited amount
of elements. The declaration of associative arrays therefore never mentions the range.
To declare an associative array, the following syntax applies:
DECLARE info ASSOC int
This declares an array containing integer values. To assign a value, using a random string "abcd" as
example:
info("abcd") = 1
Similarly, an associative array containing other types can be declared, for example strings:
DECLARE txt$ ASSOC STRING
As with other variables, declaring associative arrays within a function using LOCAL will ensure a
local scope of the array.
An associative array can have any amount of dimension. The indexes in an associative array should
be separated by a comma. For example:
DECLARE demo$ ASSOC STRING
demo$("one") = "hello"
demo$("one", "two") = "world"
Alternatively, the indexes also can be specified in a delimited string format, using a single space as
delimiter:
demo$("one two") = "world"
Note that the OPTION BASE statement has no impact on associative arrays. Also note that an
associative array cannot be part of a RECORD structure.
For the index, it is also possible to use the STR$ function to convert numbers or numerical variables
to strings:
PRINT txt$(STR$(123))

Relations, lookups, keys
In BaCon, it is possible to setup relations between associative arrays of the same type. This may be
convenient when multiple arrays with the same index need to be set at once. To setup a relation the
RELATE keyword can be used, e.g:
RELATE assoc TO other

Now for each index in the array 'assoc', the same index in the array 'other' is set. It also is possible
to copy the contents of one associative array to another. This can simply be done by using the
assignment operator, as follows:
array$() = other$()
Next to this, the actual index names in an associative array can be looked up using the LOOKUP
statement. This statement returns a dynamically created array containing all string indexes. The size
of the resulting array is dynamically declared as it depends on the amount of available elements.
Instead of creating a dynamic array, it is also possible to return the indexes of an associative array
into a delimited string by using the function OBTAIN$.
To find out if a key already was defined in the associative array, the function ISKEY can be used.
This function needs the array name and the string containing the index name, and will return either
TRUE or FALSE, depending on whether the index is defined (TRUE) or not (FALSE).
The function NRKEYS will return the amount of members in an associative array.
Deleting individual associative array members can be done by using the FREE statement. This will
leave the associative array insertion order intact. The FREE statement also can be used to delete a
full associative array in one step.
The function INDEX$ allows looking up a specific key based on value. The function INVERT can
swap the keys and values of an associative array. The SORT statement also can sort associative
arrays based on their value, effectively changing the insertion order in the underlying hash table.

Basic logic programming
With the current associative array commands it is possible to perform basic logic programming.
Consider the following Logic program which can be executed with any Prolog implementation:
mortal(X) :- human(X).

human(socrates).
human(sappho).
human(august).

mortals_are:
 write('Mortals are:'),
 mortal(X),
 write(X),
 fail.
The following BaCon program does the same thing:
DECLARE human, mortal ASSOC int
RELATE human TO mortal

human("socrates") = TRUE
human("sappho") = TRUE
human("august") = TRUE

PRINT "Mortals are:"
LOOKUP mortal TO member$ SIZE amount
FOR x = 0 TO amount - 1
 PRINT member$[x]
NEXT

Records

Declaration
Records are collections of variables which belong together. A RECORD has a name by itself and
members of the record can be accessed by using the <name>.<member> notation. The members
should be declared using the LOCAL statement. For example:
RECORD rec
 LOCAL value
 LOCAL nr[5]
END RECORD
rec.value = 99
As soon a record is created, it also exists as a type. The name of the type always consists of the
record name followed by the '_type' suffix. From then on, it is possible to declare other variables as
being of the same type. To continue with the same example:
DECLARE var TYPE rec_type
var.value = 123

Arrays of records
Record definitions also can be created as static arrays or as dynamic arrays. The size of the static
array is determined during compile time and the data will be stored in the stack frame of a SUB or
FUNCTION. This means that the array data is lost when the SUB or FUNCTION is ended.
Example of a static array definition:
RECORD data[10]
 LOCAL info$
END RECORD
To declare a dynamic array of records, the keyword ARRAY must be used. The size of a dynamic
record array is determined during runtime, and therefore, can be set with variables and functions.
The data is stored in the heap. The BaCon memory management will clean up the data when
leaving a FUNCTION or SUB. Example:
RECORD data ARRAY 10
 LOCAL name$[5]
 LOCAL age[5]
END RECORD
Note that dynamic arrays of records do not allow members which are dynamic arrays themselves.

Passing records to functions or subs
To pass a record, simply declare the variable name with the appropriate record type in the header of
the function or sub. Example code:
RECORD rec
 LOCAL nr
 LOCAL area$
END RECORD
SUB subroutine(rec_type var)
 PRINT var.nr
 PRINT var.area$
ENDSUB
rec.nr = 123
rec.area$ = "europe"
CALL subroutine(rec)
Similarly, it is possible to pass an array of records as well. Note the square brackets in the function

header:
RECORD rec ARRAY 10
 LOCAL nr
 LOCAL area$
END RECORD
SUB subroutine(rec_type var[])
 PRINT var[0].nr
 PRINT var[0].area$
ENDSUB
rec[0].nr = 123
rec[0].area$ = "europe"
CALL subroutine(rec)

Returning records from functions
In order to return a record from a function, the record type must be visible to the caller. The below
example declares the record in the main program. The function declares a variable of the same type
and initializes the record to 0. This initialization is obligatory for string members to work properly.
Then some values are assigned. Lastly, the complete record is returned to the caller:
RECORD rec
 LOCAL id
 LOCAL zip$[2]
END RECORD
FUNCTION func TYPE rec_type
 LOCAL var = { 0 } TYPE rec_type
 var.id = 1
 var.zip$[0] = "XJ342"
 var.zip$[1] = "YP198"
 RETURN var
ENDFUNCTION
rec = func()
PRINT rec.id
PRINT rec.zip$[0]
PRINT rec.zip$[1]

Strings by value or by reference
Strings can be stored by value or by reference. By value means that a copy of the original string is
stored in a variable. This happens automatically when when a string variable name ends with the '$'
symbol.
Sometimes it may be necessary to refer to a string by reference. In such a case, simply declare a
variable name as STRING but omit the '$' at the end. Such a variable will point to the same memory
location as the original string. The following examples should show the difference between by
value and by reference.
When using string variables by value:
a$ = "I am here"
b$ = a$
a$ = "Hello world..."
PRINT a$, b$
This will print "Hello world...I am here". The variables point to their individual memory areas so

they contain different strings. Now consider the following code:
a$ = "Hello world..."
LOCAL b TYPE STRING
b = a$
a$ = "Goodbye..."
PRINT a$, b FORMAT "%s%s\n"
This will print "Goodbye...Goodbye..." because the variable 'b' points to the same memory area as
'a$'. (The optional FORMAT forces the variable 'b' to be printed as a string, otherwise BaCon
assumes that the variable 'b' contains a value.)
Note that as soon an existing string variable is referred to by a reference variable, the string will not
profit from the optimized high performance string engine anymore.

ASCII, Unicode, UTF8
BaCon is a byte oriented converter. This means it always will assume that a string consists of a
sequence of ASCII bytes. Though this works fine for plain ASCII strings, it will cause unexpected
results in case of non-Latin languages, like Chinese or Cyrillic. However, BaCon supports UTF8
encoded strings also.
The original text already may contain the UTF8 byte order mark 0xEF 0xBB 0xBF. The function
HASBOM can be used to detect if such byte order mark is present. To add or delete a byte order
mark, use EDITBOM$.
In order to work with UTF8 strings, OPTION UTF8 needs to be enabled. This option will put all
string related functions in UTF8 mode at the cost of some performance loss in string processing.
Next to this option, BaCon also provides a few functions which relate to UTF8 encoding. The
following functions work independently from OPTION UTF8:

• ULEN will correctly calculate the actual characters based on the binary UTF8 sequence.
• BYTELEN will show the actual amount of bytes used by a UTF8 string.
• ISASCII can be used to verify if a string only consists of ASCII data.
• UTF8$ needs the Unicode value as argument and returns the corresponding character

depending on environment settings and the current font type.
• UCS needs a UTF8 character as an argument and returns the corresponding Unicode value.
• ESCAPE$ will convert a UTF8 string to an ASCII sequence with escape characters.
• UNESCAPE$ will convert an ASCII sequence with escaped characters back to valid UTF8.
• HASBOM will detect if the UTF8 byte order mark is present in the text
• EDITBOM$ can be used to add or delete a UTF8 byte order mark

Binary trees
BaCon has a built-in API for binary trees. Compared to arrays, a binary tree is a data structure
which can access its elements in a faster and more efficient manner. An array stores an element in a
linear way, which, in worst case, can end up in a long sequential lookup time. A binary tree
however uses its internal decision tree to lookup an element, of which the lookup time, depending
on the tree position, is logarithmic.
To declare a binary tree, BaCon uses the DECLARE or LOCAL keyword together with TREE. For
example, to declare a binary tree containing strings:
DECLARE mytree TREE STRING

Subsequently, it is possible to declare other types as well, for example integers:
DECLARE mytree TREE int
After the declaration, new elements (nodes) should be added to the tree. Adding a string is very
straightforward. It can be added to a binary tree using the TREE statement:
text$ = "abc"
TREE mytree NODE text$
Similarly, to add an integer to the binary tree:
TREE mytree NODE 567
The FIND function then can lookup the presence of an element. Because a function cannot return
different variable types, it will return a pointer. The following example looks up a string in a binary
tree, and returns a pointer to a string:
DECLARE result TYPE char**
result = FIND(mytree, "abc")
If the string was not found then the FIND function returns a NULL pointer. Otherwise it returns the
memory address where the string is located. Similarly to lookup an integer value:
DECLARE result TYPE int*
y = 567
result = FIND(mytree, y)
It is also possible to remove an element from the tree using the DELETE statement. This can either
be done by using a returned pointer from the FIND function, or by using the addresses returned by
COLLECT (see below):
DELETE result FROM mytree
Instead of plain strings and values, it is also possible to add more complicated types, like records.
This way it is possible to implement a binary tree containing key-value pairs. The below is a full
example of such an approach using a RECORD. The binary tree itself should have the type of the
search key, and the TREE statement needs to explicitly specify the RECORD type:
RECORD info
 LOCAL key
 LOCAL data
ENDRECORD
DECLARE root TREE long
DECLARE result TYPE info_type*
info.key = 12
info.data = 678
TREE root NODE info TYPE info_type
result = FIND(root, 12)
PRINT result->key
PRINT result->data
DELETE result FROM root
The following COLLECT statement can collect all the memory addresses of all nodes in the binary
tree and put them into an array:
COLLECT mytree TO allnodes
Example removing a node from the tree using an address returned by COLLECT:
DELETE &allnodes[0] FROM mytree

Creating and linking to libraries created with BaCon
With Bacon, it is possible to create libraries. In the world of Unix these are known as shared
objects. The following steps should explain how to create and link to BaCon libraries.

Step 1: create a library
The below program only contains a function, which accepts one argument and returns a value.
FUNCTION bla (NUMBER n)
 LOCAL i
 i = 5 * n
 RETURN i
END FUNCTION
In this example, the program will be saved as 'libdemo.bac'. Note that the name must begin with the
prefix 'lib'. This is a Unix convention. The linker will search for library names starting with these
three letters.

Step 2: compile the library
The program must be compiled using the '-f' flag: bacon -f libdemo.bac
This will create a file called 'libdemo.so'.

Step 3: copy library to a system path
To use the library, it must be located in a place which is known to the linker. There are several ways
to achieve this. For sake of simplicity, in this example the library will be copied to a system
location. It is common usage to copy additional libraries to '/usr/local/lib': sudo cp libdemo.so
/usr/local/lib

Step 4: update linker cache
The linker now must become aware that there is a new library. Update the linker cache with the
following command: sudo ldconfig

Step 5: demonstration program
The following program uses the function from the new library:
PROTO bla
x = 5
result = bla(x)
PRINT result
This program first declares the function 'bla' as prototype, so the BaCon parser will not choke on
this external function. Then the external function is invoked and the result is printed on the screen.

Step 6: compile and link
Now the program must be compiled with reference to the library created before. This can be done
as follows: ./bacon -l demo program.bac
With the Unix command 'ldd' it will be visible that the resulting binary indeed has a dependency
with the new library.
When executed, the result of this program should show 25.

Remarks
In case global dynamic string arrays are used by the BaCon shared object, then these need to be
initialized prior to using the arrays. This can be done by calling a special function available in each
shared object created in BaCon: the 'BaCon_init()' function. In case the shared object is compiled
by a GNU C compatible compiler, then this function is executed automatically.

Creating internationalization files
It is possible to create internationalized strings for a BaCon program. In order to do so, OPTION
INTERNATIONAL should be enabled in the beginning of the program. After this, make sure that
each translatable string is surrounded by the INTL$ or NNTL$ function.
Now start BaCon and use the '-x' option. This will generate a template for the catalog file, provided
that the 'xgettext' utility is available on your platform. The generated template by default has the
same name as your BaCon program, but with a '.pot' extension.
Then proceed with the template file and fill in the needed translations, create the PO file as usual
and copy the binary formatted catalog to the base directory of the catalog files (default:
"/usr/share/locale").
The default textdomain and base directory can be changed with the TEXTDOMAIN statement.
Below a complete sequence of steps creating internationalization files. Make sure the GNU gettext
utilities are installed.

Step 1: create program
The following simple program should be translated:
OPTION INTERNATIONAL TRUE
PRINT INTL$("Hello cruel world!")
x = 2
PRINT x FORMAT NNTL$("There is %ld green bottle", "There are %ld green bottles",
x)
This program is saved as 'hello.bac'.

Step 2: compile program
Now compile the program using the '-x' option.
bacon -x hello.bac
Next to the resulting binary, a template catalog file is created called 'hello.pot'.

Step 3: create catalog file
At the command line prompt, run the 'msginit' utility on the generated template file.
msginit -l nl_NL -o hello.po -i hello.pot
In this example, the nl_NL locale is used, which is Dutch. This will create a genuine catalog file
called 'hello.po' from the template 'hello.pot'.

Step 4: add translations
Edit the catalog file 'hello.po' manually, by adding the necessary translations.

Step 5: create object file
Again at the command line prompt, run the 'msgfmt' utility to convert the catalog file to a binary
machine object file. The result will have the same name but with an '.mo' extension:
msgfmt -c -v -o hello.mo hello.po

Step 6: install
Copy the resulting binary formatted catalog file 'hello.mo' into the correct locale directory. In this
example, the locale used was 'nl_NL'. Therefore, it needs to be copied to the default textdomain
directory '/usr/share/locale' appended with the locale name, thus: /usr/share/locale/nl_NL. In there,
the subdirectory LC_MESSAGES should contain the binary catalog file.
cp hello.mo /usr/share/locale/nl_NL/LC_MESSAGES/

The TEXTDOMAIN statement can be used to change the default directory for the catalog files.

Step 7: setup Unix environment
Finally, the Unix environment needs to understand that the correct locale must be used. To do so,
simply set the LANG environment variable to the desired locale.
export LANG=nl_NL
After this, the BaCon program will show the translated strings.

Networking

TCP
Using BaCon, it is possible to create programs which have access to TCP networking. The
following small demonstration shows a client program which fetches a website over HTTP:
OPEN "www.basic-converter.org:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.basic-converter.org\r\n\r\n" TO mynet
REPEAT
 RECEIVE dat$ FROM mynet
 total$ = total$ & dat$
UNTIL ISFALSE(WAIT(mynet, 5000))
CLOSE NETWORK mynet
PRINT total$
The following program verifies if a remote site can be reached by a specific port, trying to access it
via a specific interface on the localhost:
CATCH GOTO Error
OPEN "www.basic-converter.org:443" FOR NETWORK FROM "192.168.1.107" AS net
PRINT "The host 'basic-converter.org' listens at port 443."
CLOSE NETWORK net
END
LABEL Error
 PRINT "The host 'basic-converter.org' either is not reachable, filtered or
has port 443 not open."
The next program shows how to setup a simple TCP server. The main program uses OPEN FOR
SERVER after which the ACCEPT function handles the incoming connection:
PRINT "Connect from other terminals with 'telnet localhost 51000' and enter text
- 'quit' ends."
OPEN "localhost:51000" FOR SERVER AS mynet
WHILE TRUE
 fd = ACCEPT(mynet)
 REPEAT
 RECEIVE dat$ FROM fd
 PRINT "Found: ", dat$;
 UNTIL LEFT$(dat$, 4) = "quit"
 CLOSE SERVER fd
WEND

UDP
The UDP mode can be set with the OPTION NETWORK statement. After this, a network program

for UDP looks the same as a network program for TCP. This is an example client program:
OPTION NETWORK UDP
OPEN "localhost:1234" FOR NETWORK AS mynet
SEND "Hello" TO mynet
CLOSE NETWORK mynet
Example server program:
OPTION NETWORK UDP
OPEN "localhost:1234" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE SERVER mynet
PRINT dat$

BROADCAST
BaCon also knows how to send data in UDP broadcast mode. For example:
OPTION NETWORK BROADCAST
OPEN "192.168.1.255:12345" FOR NETWORK AS mynet
SEND "Using UDP broadcast" TO mynet
CLOSE NETWORK mynet
Example server program using UDP broadcast, listening to all interfaces:
OPTION NETWORK BROADCAST
OPEN "*:12345" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE SERVER mynet
PRINT dat$

MULTICAST
If UDP multicast is required then simply specify MULTICAST. Optionally, the TTL can be
determined also. Here are the same examples, but using a multicast address with a TTL of 5:
OPTION NETWORK MULTICAST 5
OPEN "225.2.2.3:1234" FOR NETWORK AS mynet
SEND "This is UDP multicast" TO mynet
CLOSE NETWORK mynet
Example server program using multicast:
OPTION NETWORK MULTICAST
OPEN "225.2.2.3:1234" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE SERVER mynet
PRINT dat$

SCTP
BaCon also supports networking using the SCTP protocol. Optionally, a value for the amount of
streams within one association can be specified.
OPTION NETWORK SCTP 5
OPEN "127.0.0.1:12380", "172.17.130.190:12380" FOR NETWORK AS mynet
SEND "Hello world" TO mynet
CLOSE NETWORK mynet
An example server program:
OPTION NETWORK SCTP 5

OPEN "127.0.0.1:12380", "172.17.130.190:12380" FOR SERVER AS mynet
RECEIVE txt$ FROM mynet
CLOSE SERVER mynet
PRINT txt$

TLS secured network connections
The previous chapter demonstrated network connections where the data is transferred over the wire
in plain text. However, with the increasing vulnerabilities in current network traffic, it usually is a
good idea to apply Transport Layer Security (TLS).
BaCon does not implement a propriety TLS standard by its own. However, it can make use of
existing libraries like OpenSSL. Alternatively, BaCon also allows other TLS implementations, in
case these provide an OpenSSL compatible API. Examples are the GnuTLS and WolfSSL libraries
but also projects forking from OpenSSL, like BoringSSL and LibreSSL.
To enable TLS, simply add OPTION TLS to the program. From then on, new network connections
are considered to be TLS encapsulated:
OPTION TLS TRUE

This option enables the usage of OpenSSL by default. The presence of the OpenSSL libraries and
header files on the system is required. BaCon will try to convert the source program and assumes
the default locations of the OpenSSL development files. However, if these reside at a different
location, it is possible to specify their location as follows:

PRAGMA TLS openssl INCLUDE <openssl/ssl.h> LDFLAGS -lssl -lcrypto

The OPTION TLS statement is always required, but instead of OpenSSL, it is possible to specify a
different library:

PRAGMA TLS gnutls

This will provide an indication that BaCon should make use of the development files from the
GnuTLS implementation. If these files should be taken from a special location:

PRAGMA TLS gnutls INCLUDE <gnutls/openssl.h> LDFLAGS -lgnutls -lgnutls-openssl

Lastly, BaCon supports WolfSSL as well:

PRAGMA TLS wolfssl

Also for the WolfSSL library it is possible to specify the location of the development files:

PRAGMA TLS wolfssl INCLUDE <wolfssl/options.h> <wolfssl/openssl/ssl.h> LDFLAGS -
lwolfssl

BaCon can use the function CA$ to discover the certificate authority of the connection, and CN$ to
discover the common name. The CIPHER$ function can be used to obtain details on the encryption
and the VERIFY function to verify the validity of the certificate.

The following small program queries a Mac address API over TLS using default OpenSSL:

OPTION TLS TRUE
website$ = "api.macvendors.com"
mac$ = "b0:52:16:d0:3c:fb"
OPEN website$ & ":443" FOR NETWORK AS mynet
SEND "GET /" & mac$ & " HTTP/1.1\r\nHost: " & website$ & "\r\n\r\n" TO mynet
RECEIVE info$ FROM mynet

CLOSE NETWORK mynet
PRINT TOKEN$(info$, 2, "\r\n\r\n")

The next program shows how to setup a simple webserver using TLS:

OPTION TLS TRUE
CERTIFICATE "key.pem", "certificate.pem"
CATCH GOTO resume_on_error
CONST Msg$ = "<html><head>Hello from BaCon!</head></html>"
PRINT "Connect with your browser to 'https://localhost:51000'."
OPEN "localhost:51000" FOR SERVER AS mynet
WHILE TRUE
 client = ACCEPT(mynet)
 IF client < 0 THEN CONTINUE
 RECEIVE dat$ FROM client
 PRINT dat$
 SEND "HTTP/1.1 200 Ok\r\nContent-Length: " & STR$(LEN(Msg$)) & "\r\n\r\n" &
Msg$ TO client
 CLOSE SERVER client
WEND
LABEL resume_on_error
 RESUME

The program below demonstrates a plain HTTPS connection using GnuTLS:

OPTION TLS TRUE
PRAGMA TLS gnutls INCLUDE <gnutls/openssl.h> LDFLAGS -lgnutls -lgnutls-openssl
website$ = "www.google.com"
OPEN website$ & ":443" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: " & website$ & "\r\n\r\n" TO mynet
WHILE WAIT(mynet, 2000)
 RECEIVE data$ FROM mynet
 total$ = total$ & data$
 IF REGEX(data$, "</html>") THEN BREAK
WEND
PRINT REPLACE$(total$, "\r\n[0-9a-fA-F]+\r\n", "\r\n", TRUE)
PRINT "--------------------------"
PRINT CIPHER$(mynet)
PRINT CA$(mynet)
PRINT CN$(mynet)
PRINT VERIFY(mynet, pem_file_with_rootca$)
PRINT "--------------------------"
CLOSE NETWORK mynet

Ramdisks and memory streams
When creating programs which need heavy I/O towards the hard drive, it may come handy to create
a ramdisk for performance reasons. Basically, a ramdisk is a storage in memory. While on Unix
level administrator rights are required to create such a disk, BaCon can create an elementary
ramdisk during runtime which is accessible within the program.
First, some amount of memory needs to be claimed which has to be opened in streaming mode.
This returns a memory pointer which indicates the current position in memory, similar to a file

http://www.google.com/
https://localhost:51000/

pointer for files.
Then, the statements GETLINE and PUTLINE can be used to read and write lines of data towards
the memory storage. For example:
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk
PUTLINE "Hello world" TO ramdisk
If the ramdisk needs to be read from the beginning, use MEMREWIND to reposition the memory
pointer. In the next example, a GETLINE retrieves the line which was stored there:
MEMREWIND ramdisk
GETLINE text$ FROM ramdisk
If the option MEMSTREAM was set to TRUE, BaCon can treat the created ramdisk also as a string
variable, which allows manipulations by using the standard string functions. The variable used for
the memory pointer must be a string variable:
OPTION MEMSTREAM TRUE
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk$
PUTLINE "Hello world" TO ramdisk$
MEMREWIND ramdisk$
IF INSTR(ramdisk$, "world") THEN PRINT "found!
PRINT REPLACE$(ramdisk$, "Hello", "Goodbye")
Always make sure that there is enough memory to perform string changes to the ramdisk. The
RESIZE statement safely can be used to enlarge the claimed memory during runtime, as this will
preserve the data.
The contents of the ramdisk can be written to disk using PUTBYTE. However, it must be clear how
many bytes need to be written, as the total amount of memory reserved to the ramdisk may be
bigger than the actual amount of data. The function MEMTELL can be used in case the memory
pointer is positioned at the end of the ramdisk:
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk
 PUTLINE "Hello world" TO ramdisk
 OPEN "ramdisk.txt" FOR WRITING AS txtfile
 PUTBYTE memory_chunk TO txtfile CHUNK MEMTELL(ramdisk)-memory_chunk
 CLOSE FILE txtfile
CLOSE MEMORY ramdisk
FREE memory_chunk
Alternatively, if the ramdisk was opened with OPTION MEMSTREAM set to TRUE, the string
function LEN also will return the length of the data.

Delimited strings
A delimited string is a string which can be cut into parts, based on a character or on a set of
characters. An example of such a string is a plain space delimited line in a textbook, where the
words are separated by a whitespace. Another example is an ASCII file, in which the lines are
separated by a newline. A very famous example of a delimited string is the Comma Separated
Value (CSV) string. From another point of view, a delimited string also can be looked at as a list of
items, which is the basis of LISP like languages.
The SPLIT statement can be used to split a string into elements of an array, based on a delimiter. As
with all statements and functions handling delimited strings, the SPLIT statement will ignore a
delimiter when it occurs between double quotes. Such delimiter is considered to be part of the

string. For example:
csv$ = "This,is,a,CSV,string,\"with,an\",escaped,delimiter"
SPLIT csv$ BY "," TO member$ SIZE x
One of the resulting members of the array will contain "with,an" because the comma is enclosed
within double quotes. BaCon will consider this a piece of text where the characters should be kept
together. The behavior of skipping delimiters within double quotes can be changed by setting or
unsetting OPTION QUOTED. The JOIN statement can be used to merge array elements back into
one (delimited) string.
Instead of SPLIT, it is possible to use FOR..IN as well. This statement will subsequently return the
parts of the delimited text into a variable. Example:
FOR i$ IN "aa bb cc"
In this example, the variable 'i$' will subsequently have the value 'aa', 'bb' and 'cc' assigned. Also
the FOR statement will skip a delimiter occurring within double quotes. Note that the OPTION
COLLAPSE will prevent empty results, both for SPLIT and FOR.
It is also possible to return a single member in a delimited string. This can be achieved with the
TOKEN$ function. Note that all element counting is 1-based. The following returns the 5th member
of a space delimited string, being "e f". It does not use an optional third parameter, because for all
delimited string processing, BaCon defines the default delimiter as a single space:
PRINT TOKEN$("a b c d \"e f\" g h i j", 5)
But this function also works in case some other delimiter is used. The delimiter must then be
specified in the third optional argument.
PRINT TOKEN$("1,2,3,4,5", 3, ",")
All the functions handling delimited strings accept such an optional argument. Alternatively,
OPTION DELIM can define the delimiter string which should be used in subsequent functions. As
mentioned, the default value is a single space.
The function EXPLODE$ will return a delimited string based on a specified amount of characters:
PRINT EXPLODE$("aabbcc", 1)
Alternatively, the inline loop function COIL$ can create a delimited string also, using an optional
variable, for example the alphabet:
PRINT COIL$(i, 26, CHR$(64+i))
The MERGE$ function will do the opposite: merging the elements of a delimited string to one
regular string, again optionally specifying a delimiter, for example:
PRINT MERGE$("aa,bb,cc", ",")
The ISTOKEN function can verify if a text occurs as a token in a delimited string. If so, this
function returns the actual position of the token:
t$ = "Kiev Amsterdam Lima Moscow Warschau Vienna Paris Madrid Bonn Bern Rome"
PRINT "Is this a token: ", ISTOKEN(t$, "Rome")
To obtain the first members from a delimited string, the function HEAD$ can be used:
PRINT "The first 2 elements: ", HEAD$(t$, 2)
Similarly, it is possible to get the last elements by using TAIL$:
PRINT "The last element: ", TAIL$(t$, 1)
The TAIL$ and HEAD$ functions have their complementary functions in LAST$ and FIRST$. The
following example will show all members of a delimited string except the first 2 members:
PRINT "All except the first 2 elements: ", LAST$(t$, 2)
The next code shows all members except the last:
PRINT "All except the last element: ", FIRST$(t$, 1)
It also is possible to obtain an excerpt using CUT$. The following piece of code will get the
members from delimited string 't$' starting at position 2 and ending at position 4 inclusive:

PRINT "Some middle members: ", CUT$(t$, 2, 4)
Instead of fetching a member, BaCon also can change a member in a delimited string directly by
using the CHANGE$ function:
result$ = CHANGE$("a,b,c,d,e,f,g,h,i,j", 5, "Ok", ",")
It is even possible to swap two members in a delimited string with the EXCHANGE$ function:
result$ = EXCHANGE$("a b c d e f g h i j", 5, 4)
The UNIQ$ function will return a delimited string where all members occur only once:
city$ = "Kiev Lima Moscow \"New York\" Warschau \"New York\" Rome"
PRINT "Unique member cities: ", UNIQ$(city$)
To add more members to a delimited string, use APPEND$:
t$ = APPEND$(t$, 2, "Santiago")
And to delete a member from a delimited string, use DEL$:
t$ = DEL$(t$, 3)
There are also functions to sort the members in a delimited string (SORT$) and to put them in
reversed order (REV$). With PROPER$ it is possible to capitalize the first letter of each individual
element in a delimited string. The ROTATE$ function rotates the items in a delimited string. The
COLLAPSE$ function will remove empty items in a delimited string. The MATCH function can
compare elements between two delimited strings and PARSE can return parts of a delimited string
based on wildcards. The WHERE function returns the actual character position of the indicated
token.
To determine if a string contains a delimiter at all, the HASDELIM function can be used, while the
DELIM$ function can change the actual delimiter in a string to some other definition.
If a member still contains double quotes and escaped double quotes, then this can be flattened out
by using the FLATTEN$ function. This function will remove double quotes and put escaping one
level lower:
PRINT FLATTEN$("\"Hello \\\" world\"")
Lastly, the function AMOUNT will count the number of members in a delimited string:
nr = AMOUNT("a b c d e f g h i j")
PRINT AMOUNT("a,b,c,d,e,f,g,h,i,j", ",")
BaCon also has string functions available to handle delimited strings which use unbalanced
delimiters. These are delimiters which consist of different characters, or different sets of characters.
Examples of such strings are HTML or XML strings. They can be handled by functions like
INBETWEEN$ and OUTBETWEEN$ very easily. For example, to obtain the title of a website
from an HTML definition:
PRINT INBETWEEN$("<html><head><title>Website</title></head>", "<title>",
"</title>")
By default, INBETWEEN$ will perform a non-greedy match, but the fourth optional argument can
be set to specify a greedy match.
Similarly, the OUTBETWEEN$ function will return everything but the matched substring,
effectively cutting out a substring based on unbalanced delimiters.
Note that OPTION COLLAPSE does not impact both INBETWEEN$ and OUTBETWEEN$.

Regular expressions
BaCon can digest POSIX compliant regular expressions when using the REGEX function or the
string functions EXTRACT$, REPLACE$ and WALK$. For this, BaCon relies on the standard libc
implementation. However, it is possible to define a different regular expression engine with the

PRAGMA statement.
For example, to specify the very fast NFA based regular expression library TRE, the following line
must be added at the top of the program:
PRAGMA RE tre
This will include the header file from the TRE library and will link against its shared object. Of
course, the system needs to have the required development files from the TRE library installed.
BaCon will add the default locations of all necessary files to the compile flags. In case these files
are kept at a different location, it is possible to define this explicitly as well:
PRAGMA RE tre INCLUDE <tre/regex.h> LDFLAGS -ltre
Next to the TRE library, also the Oniguruma library can be specified:
PRAGMA RE onig
When specifying the required development files:
PRAGMA RE onig INCLUDE <onigposix.h> LDFLAGS -lonig
Also the famous PCRE library is supported:
PRAGMA RE pcre
The full definition looks like:
PRAGMA RE pcre INCLUDE <pcreposix.h> LDFLAGS -lpcreposix
Basically, any regular expression library with a functional POSIX interface can be specified. This
allows a lot of flexibility when certain features for regular expression parsing are required. The
libraries TRE, Oniguruma and PCRE do not need a further INCLUDE or LDFLAGS specification
if their development files have their default names and reside at their default location.

Error trapping, error catching and debugging
BaCon can distinguish between 4 types of errors.

1. System errors. These relate to the environment in which BaCon runs.
2. Syntax errors. These are detected during the conversion process.
3. Compiler errors. These are generated by the C compiler and passed on to BaCon.
4. Runtime errors. These can occur during execution of the program.

When an error occurs, the default behavior of a BaCon program is to stop. Only in case of runtime
errors, it is possible to let the program handle the error.

• In case of statements, the CATCH GOTO command can jump to a self-defined error
handling function. This is especially convenient when creating GUI applications, as runtime
errors by default appear on the Unix command prompt.

• In case of functions, the OPTION ERROR must be set to FALSE to prevent the program
from stopping. The program then needs to check the reserved ERROR variable to handle
any unexpected situation.

Alternatively, it is possible to set a callback function for both statements and functions. This
callback function can be defined by the CATCH ERROR statement. It should point to a function
with three arguments: the first argument capturing the statement or function causing the error, the
second the name of the file and the last the line number.
To prevent BaCon from detecting runtime errors altogether, use TRAP SYSTEM.
The reserved ERROR variable contains the number of the last error occurred. A full list of error
numbers can be found in appendix A. With the ERR$ function a human readable text for the error
number can be retrieved programmatically.
Next to these options, the statement TRACE ON can set the program in such a way that it is

executed at each keystroke, step-by-step. This way it is possible to spot the location where the
problem occurs. The ESC-key will then exit the program. To switch of trace mode within a
program, use TRACE OFF.
Also the STOP statement can be useful in debugging. This will interrupt the execution of the
program and return to the Unix command prompt, allowing intermediate checks. By using the Unix
'fg' command, or by sending the CONT signal to the PID of the program, execution can be resumed.

Notes on transcompiling
The process of translating a programming language into another language, and then compiling it, is
also known as transcompiling. BaCon is a Basic to C translator, or a transcompiler, or transpiler.
When using BaCon, three stages can be distinguished:

1. conversion time
2. compilation time
3. runtime

It is important to realize that BaCon commands can function in all these stages. Examples of
statements which have impact the on conversion stage are INCLUDE, RELATE, USEC, USEH,
WITH and some of the OPTION arguments. These statements instruct BaCon about the way the
Basic code should be converted.
A statement impacting the compilation stage is PRAGMA. With this statement it is possible to
influence the behavior of the compiler.
Most other BaCon statements are effective during runtime. These form the actual program being
executed.
It should be clear that the aforementioned stages cannot be mixed. For example, it does not make
sense to define the argument for the INCLUDE statement in a string variable, as the INCLUDE
statement is effective during conversion time, while variables are used during runtime.
Note that except for system errors, the logic of the error messages basically follows the same
structure: there are syntax errors (conversion time), compiler errors and runtime errors. The system
errors relate to the possibility of using BaCon itself.

Using the BaCon spartanic editor (BaSE)
BaCon comes with a limited built-in ASCII editor which can display BaCon code using syntax
highlighting. The editor requires an ANSI compliant terminal. To start the editor, simply use the '-e'
argument and a filename:
bacon -e prog.bac
If the file does not exist, then an empty screen occurs. Pressing the <ESC> button will pop up a
menu down below the screen. The options are:
- (H)elp: display the Help screen
- (Q)uit: quit the editor
The usual functionality for editing text applies. Most actions can be performed using the <CTRL>
key and a regular key. The <CTRL>+<h> key combination will pop up the Help screen.
The Help screen will show the following information:
- <CTRL>+<n>: new file
- <CTRL>+<l>: load file
- <CTRL>+<s>: save file

- <CTRL>+<x>: cut line of text
- <CTRL>+<c>: copy line of text
- <CTRL>+<v>: paste line of text
- <CTRL>+<w> or <CTRL>+: delete line
- <HOME>: put cursor at start of line
- <END>: put cursor at end of line
- <PgUp>: move one page upwards
- <PgDn>: move page downwards
- <cursor keys>: navigate through text
- <CTRL>+<f>: find term in code
- <CTRL>+<g>: goto line number
- <CTRL>+<e>: compile and execute program
- <CTRL>+<a>: apply indentation
- <CTRL>+<r>: toggle line numbers
- <CTRL>+: toggle text boldness
- <CTRL>+<d>: show context info
- <CTRL>+<h>: show this help
- <CTRL>+<q>: quit BaCon spartanic editor
The context info works by first moving the cursor to the statement or function for which more
information is desired. Then, the <CTRL>+<d> key combination will try to lookup the keyword in
the manpage.
It is also possible to adjust the colors of the syntax highlighting. Create the BaCon configuration
file ~/.bacon/bacon.cfg if it does not exist yet. The following keywords can set the coloring scheme,
following the numbering of the COLOR statement:
- statement_color (default: 2)
- function_color (default: 6)
- variable_color (default: 3)
- type_color (default: 3)
- number_color (default: 1)
- comment_color (default: 4)
- quote_color (default: 5)
- default_color (default: 7)
For example, to set the color for quoted text strings to green, the following definition can be added
to the BaCon configuration file:
quote_color 2

Support for GUI programming
BaCon has a few functions available which enable basic GUI programming. These functions follow
the "object/property" model and implement simple event handling.

Enabling GUI functions
To enable these functions, add the following line to your code:

OPTION GUI TRUE

By default, BaCon assumes Xaw as a backend. Though this is not the most attractive widget set in

the world, it is always available on any Unix platform which has X installed. Alternatively, a
different backend can be set using PRAGMA GUI. Currently, Xaw3d, Motif, GTK2, GTK3, GTK4
and the console based CDK widgets (experimental) sets are supported. The following code will
select Motif as a backend:

PRAGMA GUI motif

Instead of "motif", the PRAGMA GUI statement also accepts "xaw3d", "uil", "gtk2", "gtk3",
"gtk4", "tk" and "cdk".

BaCon generates the source code for the GUI so the required header files for the toolkits should be
available on the compiling platform.

Defining the GUI
To define the GUI, the function GUIDEFINE can be used. This function may occur in the program
only once. Its string argument should contain a list of declarative widget definitions, each set of
definitions grouped between curly brackets. The GUIDEFINE function returns the GUI id number.
This is an example for the Xaw widget toolkit:

gui = GUIDEFINE(" \
{ type=window name=window callback=window XtNwidth=300 XtNtitle=\"Information\"
} \
{ type=dialogWidgetClass name=dialog parent=window XtNlabel=\"Enter term:\"
XtNvalue=\"<term>\" } \
{ type=commandWidgetClass name=submit parent=dialog callback=XtNcallback
XtNlabel=\"Submit\" } ")

As can be observed, each widget refers to properties which are specific to the Xaw toolkit. A
widget must have a type and a name. Optionally, a widget can be attached to a parent, and it can
submit a callback signal, in which case the signal name must be specified.

The callback keyword can also define a particular string to be returned in the event loop, defined
after the signal name. The following will return "click" when the button is pressed:

{ type=commandWidgetClass name=submit parent=dialog callback=XtNcallback,click
XtNlabel=\"Submit\" }

Setting properties
The function GUISET can be used to specify more properties at a later stage in the program:

CALL GUISET(gui, "label", XtNjustify, XtJustifyLeft)

The function GUIGET is used to retrieve a value from a widget. The value is stored in a pointer
variable:

CALL GUIGET(gui, "text", XtNstring, &txt)

For the TK backend, these functions can get and set variables from and to the several TK functions.

Entering the mainloop
Once the GUI is defined, the program can enter the event loop using GUIEVENT$. It requires the
GUI id as an argument:

WHILE TRUE

 event$ = GUIEVENT$(gui)
 SELECT event$
 CASE "submit"
 BREAK
 ENDSELECT
WEND

When an event has happened, either the name of the widget causing the event is returned, or the
defined string in the callback keyword. The BaCon program can decide what to do next.

In some cases it may be necessary to obtain a value which is passed to the callback by the widget
library. In such situation, the GUIEVENT$ function accepts an optional second boolean parameter.
This will add the incoming callback value as a pointer attached as a string to the return value.

For example, to obtain the selected item in a XawList widget, the Xaw library returns a struct
containing information about the XawList. This can be fetched as follows:

WHILE TRUE
 event$ = GUIEVENT$(gui, TRUE)
 SELECT TOKEN$(event$, 1)
 CASE "submit"
 BREAK
 CASE "list"
 info = (XawListReturnStruct*)DEC(TOKEN$(event$, 2))
 PRINT TOKEN$(info->string, 1)
 ENDSELECT
WEND

Defining helper functions
It is also possible to define supplementary helper functions. A widget library can implement
additional functions to perform actions on widgets. These helper functions can be configured in the
BaCon program by setting up a function pointer and then use GUIFN.

For example, to define a helper function showing a Xaw widget:

LOCAL (*show)() = XtPopup TYPE void
CALL GUIFN(id, "window", show, XtGrabNonexclusive)

Such definition may seem unnecessary, however, using GUIFN has several advantages: it is
compliant with the overall API design, the source code becomes smaller in size, and most
importantly, we do not need to worry about argument types of the helper function.

For the TK backend, the GUIFN statement can define additional TCL code in the current TK
context.

Using native functions
The function GUIWIDGET will return the memory address of a widget based on the defined name
for that widget. This can come handy in cases where a GUI helper function is used natively.

Overview of BaCon statements and functions

ABS
ABS(x)
Type: function
Returns the absolute value of x. This is the value of x without sign. Example without and with ABS,
where the latter always will produce a positive output:
PRINT x-y
PRINT ABS(x-y)

ACCEPT
ACCEPT(fd)
Type: function
In a network program, this function waits for an incoming connection and returns a new descriptor
to be used for SEND and RECEIVE. If the ACCEPT functions fails, then the returned value is a
negative number. Example:
OPEN "localhost:51000" FOR SERVER AS mynet
WHILE TRUE
 fd = ACCEPT(mynet)
 REPEAT
 RECEIVE dat$ FROM fd
 PRINT "Found: ", dat$;
 UNTIL LEFT$(dat$, 4) = "quit"
 CLOSE SERVER fd
WEND

ACOS
ACOS(x)
Type: function
Returns the calculated arc cosine of x, where x is a value in radians.

ADDRESS
ADDRESS(x)
Type: function
Returns the memory address of a variable or function. The ADDRESS function can be used when
passing pointers to imported C functions (see IMPORT).

ALARM
ALARM <sub>, <time>
Type: statement
Sets a SUB to be executed in <time> milliseconds. The value '0' will cancel an alarm. The alarm
will interrupt any action the BaCon program currently is performing; an alarm always has priority.

After the sub is executed, the program will continue the operation it was doing when the alarm
occurred. Example:
SUB dinner
 PRINT "Dinner time!"
END SUB
ALARM dinner, 5000

ALIAS
ALIAS <function> TO <alias>
Type: statement
Defines an alias to an existing function or an imported function. Aliases cannot be created for
statements or operators. Example:
ALIAS "printf" TO DISPLAY
DISPLAY("Hello world\n")

ALIGN$
ALIGN$(string$, width, type [,indent])
Type: function
Aligns a multi line <string$> over a maximum of <width> characters. The <type> indicates the
kind of alignment to apply: 0 = left alignment, 1 = right alignment, 2 = center alignment, and 3
means fill or justify.
The alignment takes place in three stages. First, if the text starts with the UTF-8 byte order mark
bytes 0xEF 0xBB 0xBF, then these are removed and the ALIGN$ function will automatically
enable UTF8 mode for the text. Then, if the original text contains newline characters (0x0A), these
are replaced with a single space. However, empty lines (double new lines indicating a paragraph)
are preserved, as well as all other special characters, like a space (0x20), tab (0x09), carriage return
(0x0D), non breaking space (0xA0) or a form feed (0x0C). Therefore, in some cases, it may be
necessary to remove such special characters before using ALIGN$.
The second stage will try to find the best spot where to replace the space character (0x20) for a
newline character (0x0A). This is done within the provided <width>. If there are redundant adjacent
spaces then these are removed.
Note that the ALIGN$ function will not hyphenate words. Lines are being cut at a white space
where possible. If a word does not fit in the provided width by itself, then it will be wrapped
around.
The third stage will apply the chosen type of alignment. In case type is 0, 1 or 2, the lines in the
final result are being padded with a single space character. In case type is 3, additional spaces are
being added equally in between the words to align the text on both sides, except for the last line in a
paragraph (where paragraphs are considered to be separated from each other by an empty line).
If the original text contained the UTF8 order mark 0xEF 0xBB 0xBF, then the ALIGN$ function
will put back the byte order mark in the first bytes of the result. For more information on the UTF8
byte order mark, see also the HASBOM and EDITBOM$ functions.
The optional argument <indent> will prepend additional space characters to each line. Example:
data$ = LOAD$("ascii_data.txt")
PRINT ALIGN$(data$, 40, 0)

The ALIGN$ can handle UTF8 strings correctly as well. If the original text does not contain the
UTF8 byte order mark then UTF8 mode should be enabled manually. The following example aligns
a UTF8 text without byte order mark at two sides, each line not containing more than 50 characters,
starting 10 positions from the left, while the text is being stripped from carriage return symbols:
OPTION UTF8 TRUE
text$ = LOAD$("Jane_Austen.txt")
PRINT ALIGN$(EXTRACT$(text$, CR$), 50, 3, 10)

AMOUNT
AMOUNT(string$ [,delimiter$])
Type: function
Returns the amount of tokens in a string split by delimiter$. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of
multiple characters. If delimiter$ occurs between double quotes in string$ then it is ignored.
Example:
PRINT AMOUNT("a b c d \"e f\" g h i j")
PRINT AMOUNT("Dog Cat@@@Mouse Bird@@@123@@@456@@@789", "@@@")

AND
<expr> AND <expr>
Type: operator
Performs a logical 'and' between two expressions. For the binary 'and', use the '&' symbol. Example:
IF x = 0 AND y = 1 THEN PRINT "Hello"

APPEND
APPEND string$ TO filename$
APPEND string$, other$
Type: statement
This statement can be used two ways. The first is to save a string to disk in one step. If the file
already exists, the data will be appended. See BAPPEND for appending binary files in one step, and
OPEN/WRITELN/READLN/CLOSE to read and write to a file using a filehandle in append mode.
In the second way, this statement simply will append one string to another, thereby modifying the
original string.
Examples:
APPEND result$ TO "/tmp/more_data.txt"
APPEND str$, "world"

APPEND$
APPEND$(string$, pos, token$ [, delimiter$])
Type: function
Inserts <token$> into a delimited string$ split by delimiter$, at position <pos>. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it

may consist of multiple characters.
If the <pos> parameter is 0, or is bigger than the amount of members in <string$>, then <token$> is
appended. If the <pos> parameter is negative, then <string$> will be returned unmodified.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See DEL$ to delete members, and the chapter
on delimited string functions for more information about delimited strings. Example:
PRINT APPEND$("Rome Amsterdam Kiev Bern Paris London", 2,
"Vienna")

ARGUMENT$
ARGUMENT$
Type: variable
Reserved variable containing name of the program and the arguments to the program. These are all
separated by spaces.
If the CMDLINE function is used then this variable will contain optional arguments to command
line functions.

ASC
ASC(char)
Type: function
Calculates the ASCII value of char (opposite of CHR$). See also UCS for UTF8 characters.
Example:
PRINT ASC("x")

ASIN
ASIN(x)
Type: function
Returns the calculated arcsine of x, where x is a value in radians.

ATN
ATN(x)
Type: function
Returns the calculated arctangent of x, where x is a value in radians.
PRINT ATN(RAD(90))

ATN2
ATN2(y, x)
Type: function
Returns the calculated arctangent of y/x. The sign of the arguments is used to determine the
quadrant.
PRINT ATN2(30, -35)

B64DEC$
B64DEC$(x$)
Type: function
Returns the decoded string or data from a BASE64 string. In case of binary data, the LEN function
will correctly provide the amount of bytes available in the string. Example:
PRINT B64DEC$("QmFDb24gaXMgZnVu")
Example where binary PNG data is recovered into a string variable and saved:
png$ = B64DEC$(some_encoded_png$)
BSAVE png$ TO "picture.png" SIZE LEN(png$)

B64ENC$
B64ENC$(x$[, length])
Type: function
Returns the encoded string from a regular string or memory area. In case of a string, the length of
the string is the default. In case of a memory area, the additional <length> argument must specify
the amount of bytes to encode. Examples:
PRINT B64ENC$("Encode me")
PRINT B64ENC$(mem, 1024)

BAPPEND
BAPPEND data TO filename$ SIZE amount
Type: statement
Saves a memory area with binary data to disk in one step. If the file already exists, the data will be
appended. See APPEND for appending text files in one step, and
OPEN/PUTBYTE/GETBYTE/CLOSE to read and write to a file using a filehandle. Example:
BAPPEND mem TO "/home/me/data" SIZE 10

BASENAME$
BASENAME$(filename$ [, flag])
Type: function
Returns the filename part of a given full filename. The optional [flag] indicates the part of the
filename to be returned. The values are: 0 = full filename (default), 1 = filename without extension
and 2 = extension without filename. See also DIRNAME$.

BIN$
BIN$(x)
Type: function
Calculates the binary value of x and returns a string with the result. The type size depends on the
setting of OPTION MEMTYPE. If MEMTYPE is set to char (default), then 8 bits are returned, if it
is set to short then 16 bits are returned, etc. See also DEC to convert back to decimal.

BIT
BIT(x)
Type: function
This function returns the value for a bit on position <x>. If x = 0 then it returns 1, if x = 1 then it
returns 2, if x = 2 then it returns 4 and so on.
PRINT BIT(x)

BLOAD
BLOAD(filename$)
Type: function
Performs a load into a memory address of a binary file. The memory address is returned when the
loading was successful. When done with the data, the memory should be freed with the FREE
statement. See LOAD$ for loading text files in one step, and
OPEN/PUTBYTE/GETBYTE/CLOSE to read and write to a file using a file handle. Example:
binary = BLOAD("/home/me/myprog")
PRINT "First two bytes are: ", PEEK(binary), " ", PEEK(binary+1)
FREE binary

BREAK
BREAK [x]
Type: statement
Breaks out loop constructs like FOR/NEXT, WHILE/WEND, REPEAT/UNTIL or
DOTIMES/DONE.
The optional parameter can define to which level the break should take place in case of nested
loops. This parameter should be an integer value higher than 0. See also CONTINUE to resume a
loop.

BSAVE
BSAVE data TO filename$ SIZE amount
Type: statement
Saves a memory area with binary data to disk in one step. If the file already exists it is overwritten.
The amount must be specified in bytes. See SAVE for saving text files in one step, and
OPEN/PUTBYTE/GETBYTE/CLOSE to read and write to a file using a filehandle. Example:
BSAVE mem TO "/home/me/picture.png" SIZE 12123

BYTELEN
BYTELEN(x$, y [, z])
Type: function
Returns the actual byte length of UTF8 string x$ in case of y characters. This is a wrapper function
which can be used in combination with regular string functions, allowing correct processing of

UTF8 string sequences. If the optional argument z is set then start counting the byte length from the
right size of string x$. Example:
str$ = "A © and a ® symbol"
PRINT LEFT$(str$, BYTELEN(str$, 3))
PRINT RIGHT$(str$, BYTELEN(str$, 8, TRUE))

CA$
CA$(connection)
Type: function
Returns the Certificate Authority from the certificate used in the current network connection.
Assumes that TLS has been enabled. See the chapter on secure network connections for more
details. See also CN$.

CALL
CALL <sub name> [TO <var>]
Type: statement
Calls a subroutine if the sub is defined at the end of the program. With the optional TO also a
function can be invoked which stores the result value in <var>.
Example:
CALL fh2celsius(72) TO celsius
PRINT celsius

CATCH
CATCH GOTO <label> | RESET | ERROR <function>
Type: statement
The GOTO keyword sets the error function where the program should jump to if runtime error
checking is enabled with TRAP. This only is applicable for statements. For an example, see the
RESUME statement.
The RESET keyword restores the BaCon default error messages for statements.
The ERROR keyword allows setting a callback function where the program will jump to in case an
error occurs. This works both for statements and functions provided that OPTION ERROR is set to
FALSE. This is to prevent that erroneous functions will stop the program. The callback function
should have three arguments which will hold the name of the statement or function, the name of the
file and the line number where the error occurred. Example:
OPTION ERROR FALSE
CATCH ERROR help
SUB help(c$, f$, no)
 PRINT "Error is: ", ERR$(ERROR), " in function ", c$, " in
file '", f$, "' at line ", no
 PRINT "Callback ended"
END SUB

CEIL
CEIL(x)
Type: function
Rounds x up to the nearest integral (integer) number. This function always returns a float value. See
also FLOOR and ROUND.

CERTIFICATE
CERTIFICATE <key.pem>, <certificate.pem>
Type: statement
Defines the private key and certificate files in PEM format. This function is used to setup TLS
server networking. For an example, see the chapter on TLS.

CHANGE$
CHANGE$(string$, position, new$ [, delimiter$])
Type: function
Changes the token in string$, which is split by delimiter$, at position with new$. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it
may consist of multiple characters. If delimiter$ occurs between double quotes in string$ then it is
ignored. This behavior can be changed by setting OPTION QUOTED to FALSE.
If the indicated position is outside a valid range, the original string is returned. Use the FLATTEN$
function to flatten out the returned token. See also EXCHANGE$, TOKEN$ and SPLIT.
Examples:
PRINT CHANGE$("a b c d \"e f\" g h i j", 5, "OK")
PRINT CHANGE$("a,b,c,d,e,f,g,h,i,j", 4, "123", ",")

CHANGEDIR
CHANGEDIR <directory>
Type: statement
Changes the current working directory. Example:
CHANGEDIR "/tmp/mydir"

CHOP$
CHOP$(x$[, y$[, z]])
Type: function
Returns a string defined in x$ where on both sides <CR>, <NL>, <TAB> and <SPACE> have been
removed. If other characters need to be chopped then these can be specified in the optional y$. The
optional parameter z defines where the chopping must take place: 0 means on both sides, 1 means
chop at the left and 2 means chop at the right. Examples:
PRINT CHOP$("bacon", "bn")
PRINT CHOP$(" hello world ", " ", 2)
PRINT CHOP$("print \"end\"", "\n\r\t " & CHR$(34))

CHR$
CHR$(x)
Type: function
Returns the character belonging to ASCII number x. This function does the opposite of ASC. The
value for x must lie between 0 and 255. See UTF8$ for Unicode values. Example:
LET a$ = CHR$(0x23)
PRINT a$

CIPHER$
CIPHER$(connection)
Type: function
Returns the description of the encryption methods in use by the current network connection.
Assumes that TLS has been enabled. See the chapter on secure network connections for more
details. See also CA$ and CN$.

CL$
CL$
Type: variable
The Clear Line variable clears the line indicated by the current cursor position. See also EL$.

CLASS
CLASS
 <body>
ENDCLASS | END CLASS
Type: statement
Defines a class in original C++ code. This code is put unmodified into the generated global header
source file. It is particularly useful when embedding C++ code into BaCon. See also USEC and
USEH. Example:
CLASS TVision : public Tapplication
public:
 TVision() : TProgInit(&TVision::TV_initStatusLine,
&TVision::TV_initMenuBar, &Tvision::initDeskTop)
 {
 }
 static TMenuBar *TV_initMenuBar(TRect);
 static TStatusLine *TV_initStatusLine(TRect);
ENDCLASS

CLEAR
CLEAR
Type: statement
Clears the terminal screen. To be used with ANSI compliant terminals.

CLOSE
CLOSE FILE|DIRECTORY|NETWORK|SERVER|MEMORY|LIBRARY|DEVICE x[, y,
z, ...]
Type: statement
Close file, directory, network, memory or library identified by handle. Multiple handles of the same
type maybe used in a comma separated list. Examples:
CLOSE FILE myfile
CLOSE MEMORY mem1, mem2, block
CLOSE LIBRARY "libgtk.so"

CMDLINE
CMDLINE(options$)
Type: function
Defines the possible command line options to the current program. The CMDLINE function returns
the ASCII value of each option until all provided options are parsed, in which case a '-1' is returned.
In case an unknown option is encountered, question mark is returned.
If <options$> contains a colon, then an extra argument to the option is required. Such argument will
appear in the reserved variable ARGUMENT$. Example where a program recognizes the options '-
n' and '-f <arg>':
REPEAT
 option = CMDLINE("nf:")
 PRINT option
 PRINT ARGUMENT$
UNTIL option = -1

CN$
CN$(connection)
Type: function
Returns the Common Name from the certificate used in the current network connection. Assumes
that TLS has been enabled. See the chapter on secure network connections for more details. See
also CA$.

COIL$
COIL$([variable,] nr, expression$[, delimiter$])
Type: function
This is an inline loop which returns the results of the repeatedly evaluated <expression$> appended
to a delimited string. The optional <variable> must be a numeric variable and <nr> defines how
many times the <expression$> is carried out. If <variable> is not present then the anonymous
variable "_" will be used.
It is possible to specify the concatenation delimiter explicitly. Note that this only works when
COIL$ also defines a variable name, so COIL$ counts 4 parameters in total.

It is not allowed to use nested COIL$ constructs, or to use COIL$ multitple times in the same
statement. Such code will generate a syntax error during conversion time. See also EXPLODE$ for
another method to create delimited strings, the inline LOOP$ to create regular strings, or the inline
if IIF$. More info on delimited strings can be found in the chapter on delimited string functions.
Example to get the first 10 letters in the Latin alphabet as a delimited string, using the anonymous
variable:
PRINT COIL$(10, CHR$(64+_))
The following code prints only the even numbers between 0 and 100:
PRINT COIL$(100, IIF$(EVEN(_), STR$(_)))
This example prints the elements in a string array, each on a separate line:
PRINT COIL$(i, 5, array$[i-1], NL$)

COLLAPSE$
COLLAPSE$(string$ [,delim$])
Type: function
Collapses a delimited string so no empty items are present. The resulting string will only contain
items separated by exactly one delimiter.
If the delimiter occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Example:
PRINT COLLAPSE$("a,,,b,,,,,,c,d,,,e", ",")

COLLECT
COLLECT <tree> TO <array> [SIZE <variable>][STATIC]
Type: statement
Retrieves all node addresses which are present in a binary tree. The results are stored in <array>. As
it sometimes is unknown how many elements this resulting array will contain, the array should not
be declared explicitly. Instead, COLLECT will declare the result array dynamically.
If COLLECT is being used in a function or sub, then <array> will have a local scope. Else <array>
will be visible globally, and can be accessed within all functions and subs.
The total amount of elements created in this array is stored in the optional <variable>. This variable
can be declared explicitly using LOCAL or GLOBAL.
For more information and examples, see the chapter on binary trees. See also FIND to verify the
presence of a node in a binary tree. Example:
COLLECT mytree TO allnodes
FOR x = 0 TO UBOUND(allnodes)-1
 PRINT allnodes[x] FORMAT "%p\n"
NEXT
The optional STATIC keyword allows the created <array> to be returned from a function.

COLOR
COLOR <BG|FG> TO <BLACK|RED|GREEN|YELLOW|BLUE|MAGENTA|CYAN|
WHITE>

COLOR <NORMAL|INTENSE|INVERSE|RESET>
Type: statement
Sets coloring for the output of characters in a terminal screen. For FG, the foreground color is set.
With BG, the background color is set. The INTENSE and NORMAL keywords can be used
combined with a color. This statement only works well with ANSI compliant terminals. Refer to the
TYPE statement to set the terminal font type. Example:
COLOR FG TO GREEN
PRINT "This is green!"
COLOR FG TO INTENSE RED
PRINT "This is red!"
COLOR RESET
Instead of color names, it is also possible to use a numeric reference. The FG and BG indicators
have an enumeration as well:

Item Number

Black 0

Red 1

Green 2

Yellow 3

Blue 4

Magenta 5

Cyan 6

White 7

BackGround 0

ForeGround 1

Example using numeric color references:
COLOR 1 TO 3
PRINT "This is yellow!"
COLOR RESET

COLUMNS
COLUMNS
Type: function
Returns the amount of columns in the current ANSI compliant terminal. See also ROWS. Example:
PRINT "X,Y: ", COLUMNS, ",", ROWS

CONCAT$
CONCAT$(x$, y$, ...)

Type: function
Returns the concatenation of x$, y$, ... The CONCAT$ function can accept an unlimited amount of
arguments. Example:
txt$ = CONCAT$("Help this is ", name$, " carrying a strange ",
thing$)
The CONCAT$ function is deprecated but it still is available for compatibility reasons. It can be
used for high performance string concatenation but care should be taken when using non-BaCon
functions as arguments.
Instead, BaCon uses the '&' symbol as infix string concatenation operator. This operator is more
versatile and allows any kind of concatenation. The following is the same example using '&':
txt$ = "Help this is " & name$ & " carrying a strange " & thing$

CONST
CONST <var> = <value> | <expr>
Type: statement
Assigns a value a to a label which cannot be changed during execution of the program. Consts are
globally visible from the point where they are defined. Example:
CONST WinSize = 100
CONST Screen = WinSize * 10 + 5

CONTINUE
CONTINUE [x]
Type: statement
Skips the remaining body of loop constructs like FOR/NEXT, WHILE/WEND, REPEAT/UNTIL
or DOTIMES/DONE.
The optional parameter can define at which level a continue should be performed in case of nested
loops, and should be an integer value higher than 0.

COPY
COPY <from> TO <new> [SIZE length]
Type: statement
If <from> and <to> contain string values, then COPY copies a file to a new file. Example:
COPY "file.txt" TO "/tmp/new.txt"
If the SIZE keyword is present, then COPY assumes a memory copy. Example copying one array to
another:
OPTION MEMTYPE long
DECLARE array[5], copy[5] TYPE long
array[0] = 15
array[1] = 24
array[2] = 33
array[3] = 42
array[4] = 51
COPY array TO copy SIZE 5

COS
COS(x)
Type: function
Returns the calculated COSINE of x, where x is a value in radians. Example:
PRINT COS(RAD(45))

COUNT
COUNT(string, y)
Type: function
Returns the amount of times the ASCII or UCS value <y> occurs in <string>. Example:
PRINT COUNT("Hello world", ASC("l"))
OPTION UTF8 TRUE
PRINT COUNT(FILL$(5, 0x1F600), 0x1F600)
See also FILL$.

CR$
CR$
Type: variable
Represents the Carriage Return as a string.

CURDIR$
CURDIR$
Type: function
Returns the full path of the current working directory. See also ME$ or REALPATH$.

CURSOR
CURSOR <ON|OFF> | <FORWARD|BACK|UP|DOWN> [x]
Type: statement
Shows ("on") or hides ("off") the cursor in the current ANSI compliant terminal. Also, the cursor
can be moved one position in one of the four directions. Optionally, the amount of steps to move
can be specified. Example:
PRINT "I am here"
CURSOR DOWN 2
PRINT "...now I am here"

CUT$
CUT$(string$, start, end [, delimiter$])
Type: function
Retrieves elements from a delimited string$ split by delimiter$, starting at <start> until <end>

inclusive. The delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is
assumed. When specified, it may consist of multiple characters.
If the <start> parameter is higher than <end>, the result will be the same as when the parameters
were reversed.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also HEAD$ and TAIL$, and the chapter on
delimited string functions for more information about delimited strings. Example:
PRINT "Excerpt: ", CUT$("Rome Amsterdam Kiev Bern Paris London",
2, 4)

DATA
DATA <x, y, z, ...>
Type: statement
Defines data. The DATA statement always contains data which is globally visible. The data can be
read with the READ statement. If more data is read than available, then in case of numeric data a '0'
will be retrieved, and in case of string data an empty string. To start reading from the beginning
again use RESTORE. Example:
DATA 1, 2, 3, 4, 5, 6
DATA 0.5, 0.7, 11, 0.15
DATA 1, "one", 2, "two", 3, "three", 4, "four"

DAY
DAY(x)
Type: function
Returns the day of the month (1-31) where x is amount of seconds since January 1, 1970. Example:
PRINT DAY(NOW)

DEC
DEC(x [,flag])
Type: function
Calculates the decimal value of x, where x should be passed as a string. The optional [flag]
parameter determines the base to convert from. If flag = 0 (default) then base is hexadecimal. If flag
lies between 2 and 36 then the corresponding base is assumed. Note that DEC always returns a
positive number. See also HEX$ and BIN$ for hexadecimal and binary conversions. Example:
PRINT DEC("AB1E")
PRINT DEC("00010101", 2)

DECLARE
DECLARE <var>[,var2,var3,...] TYPE | ASSOC | TREE <c-type> | [ARRAY <size>]
Type: statement
This statement is similar to the GLOBAL statement and is available for compatibility reasons.

DECR
DECR <x>[, y]
Type: statement
Decreases variable <x> with 1. Optionally, the variable <x> can be decreased with <y>. Example:
x = 10
DECR x
PRINT x
DECR x, 3
PRINT x

DEF FN
DEF FN <label> [(args)] = <value> | <expr>
Type: statement
Assigns a value or expression to a label. Examples:
DEF FN func(x) = 3 * x
PRINT func(12)
DEF FN First$(x$) = LEFT$(x$, INSTR(x$, " ")-1)
PRINT First$("One Two Three")

DEG
DEG(x)
Type: function
Returns the degree value of x radians. Example:
PRINT DEG(PI)

DEL$
DEL$(string$, pos [, delimiter$])
Type: function
Deletes a member at position <pos> from a delimited string$ split by delimiter$. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it
may consist of multiple characters.
If the <pos> parameter is smaller than 1 or bigger than the amount of members in <string$>, then
the original string$ is returned.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See APPEND$ for adding members, and the
chapter on delimited string functions for more information about delimited strings. Example:
PRINT DEL$("Rome Amsterdam Kiev Bern Paris London", 2)

DELETE
DELETE <FILE|DIRECTORY|RECURSIVE> <x$> [FROM] <binary tree>
Type: statement
Deletes a file with the FILE argument, or an empty directory when using the DIRECTORY

argument. The RECURSIVE argument can delete a directory containing files. It can also delete a
complete directory tree. The FROM keyword is used when deleting a node from a binary tree. If an
error occurs then this can be captured by using the CATCH statement. Example:
DELETE FILE "/tmp/data.txt"
DELETE RECURSIVE "/usr/data/stuff"
DELETE node FROM tree

DELIM$
DELIM$(string$, old$, new$)
Type: function
Changes the delimiter in string$ from old$ to new$. The new delimiter can be of different size
compared to the old delimiter.
If the old delimiter occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Example:
PRINT "Changed delimiter: ", DELIM$("f,q,a,c,i,b,r,t,e,d,z,", ",",
"@@@")

DIRNAME$
DIRNAME$(filename$)
Type: function
Returns the pathname part of a given filename. See also REALPATH$ and BASENAME$.

DLE$
DLE$
Type: variable
The DOS Line Ending variable returns a carriage return and a newline character. See also NL$ and
CR$.

DO
DO
 <body>
DONE
Type: statement
With DO/DONE a body of statements can be grouped together. This is useful in case of special
compiler constructs like pragmas. Example:
PRAGMA omp parallel sections
DO
 <...code...>
DONE

DOTIMES
DOTIMES x
 <body>
 [BREAK]|[CONTINUE]
DONE
Type: statement
With DOTIMES/DONE a body of statements can be repeated for a fixed amount of times without
the need for a variable. This is known as an anonymous loop. As with other loops, it can be
prematurely exited by using BREAK. Also, part of the body can be skipped by the use of the
CONTINUE statement. See FOR/NEXT, WHILE/WEND and REPEAT/UNTIL for setting up
other types of loops. To refer to the current loop, the anonymous variable "_" can be used.
Example:
DOTIMES 10
 PRINT "This is loop number ", _, " in DOTIMES."
DONE

EDITBOM$
EDITBOM$(string$, action)
Type: function
Adds or deletes the UTF8 byte order mark from <string$>. If <action> is ‘0’ then the byte order
mark will be removed from <string$>, if found in the string. If <action> is ‘1’ then the UTF8 byte
order will be added to the string if it is not there already. See also HASBOM to determine if a string
has a UTF8 byte order mark.

EL$
EL$
Type: variable
The Erase Line variable clears the line from the current cursor position towards the end of the line.
See also CL$.

END
END [value]
Type: statement
Exits a program. Optionally, a value can be provided which the program can return to the shell.

ENDFILE
ENDFILE(filehandle)
Type: function
Function to check if EOF on a file opened with <handle> is reached. If the end of a file is reached,
the value '1' is returned, else this function returns '0'. For an example, see the OPEN statement.

ENUM
ENUM
 item1, item2, item3
ENDENUM | END ENUM
Type: statement
Enumerates variables automatically. If no value is provided, the enumeration starts at 0 and will
increase with integer numbers. Example:
ENUM
 cat, dog, fish
END ENUM
It is also possible to explicitly define a value:
ENUM
 Monday=1, Tuesday=2, Wednesday=3
END ENUM

EPRINT
EPRINT [value] | [text] | [variable] | [expression] [FORMAT <format>[TO <variable>[SIZE
<size>]] | [,] | [;]
Type: statement
Same as PRINT but uses 'stderror' as output.

EQ
x EQ y
Type: operator
Verifies if x is equal to y. To improve readability it is also possible to use IS instead. Both the EQ
and IS operators only can be used in case of numerical comparisons. Examples:
IF q EQ 5 THEN
 PRINT "q equals 5"
END IF
BaCon also accepts a single '=' symbol for comparison. Next to the single '=' also the double '=='
can be used. These work both for numerical comparisons and for string comparisons. See also NE.
IF b$ = "Hello" THEN
 PRINT "world"
END IF

EQUAL
EQUAL(x$, y$)
Type: function
Compares two strings, and returns 1 if x$ and y$ are equal, or 0 if x$ and y$ are not equal. Use
OPTION COMPARE to establish case insensitive comparison. Example:
IF EQUAL(a$, "Hello") THEN
 PRINT "world"

END IF
The EQUAL function is in place for compatibility reasons. The following code also works:
IF a$ = "Hello" THEN
 PRINT "world"
END IF

ERR$
ERR$(x)
Type: function
Returns the runtime error as a human readable string, identified by x. Example:
PRINT ERR$(ERROR)

ERROR
ERROR
Type: variable
This is a reserved variable, which contains the last error number. This variable may be reset during
runtime.

ESCAPE$
ESCAPE$(string$)
Type: function
Parses the text in <string$> and converts special characters (like newline or Unicode) into their
escaped version. This functionality mainly is used by C files or JSON files. The special characters
are converted into default C escape sequences like '\n', '\r', '\t' etc, and into '\u' and '\U' for Unicode
characters. Non-printable binary data in the string is not converted. See also UNESCAPE$ to do the
opposite. Example:
PRINT ESCAPE$("Hello world ")😀

EVAL
EVAL(x$)
Type: function
Returns the evaluated result of a mathematical function described in a string. This function relies on
the presence of the 'libmatheval' library and development header files on the compiling platform.
The EVAL function first needs to be enabled using OPTION EVAL.
The syntax for the mathematical function follows the regular C syntax. This means that the
operators + (add), - (subtract), * (multiply), / (divide) and ^ (exponent) work as usual. More over,
the following functions are supported as well: exp, log, sqrt, sin, cos, tan, cot, sec, csc, asin, acos,
atan, acot, asec, acsc, sinh, cosh, tanh, coth, sech, csch, asin), acosh, atanh, acoth, asech, acsch,
log2e, e, log10e, ln2, ln10, pi, pi_2, pi_4, 1_pi, 2_pi, 2_sqrtpi, sqrt, sqrt1_2 and abs.
The string may contain real variable names from the BaCon program. These will be evaluated
automatically. The variables must be declared as floating type (double) before. Example:
OPTION EVAL TRUE

DECLARE x, y TYPE FLOATING
x = 3
y = 4
nr = 5
PRINT EVAL("x*x + y +" & STR$(nr) & " + 6")

EVEN
EVEN(x)
Type: function
Returns 1 if x is even, else returns 0.

EXCHANGE$
EXCHANGE$(haystack$, pos1, pos2 [, delimiter$])
Type: function
Exchanges the token at pos1 with the token at pos2 in haystack$ split by delimiter$. The delimiter$
is optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified,
it may consist of multiple characters. If delimiter$ occurs between double quotes in haystack$ then
it is ignored. This behavior can be changed by setting OPTION QUOTED to FALSE.
If one of the indicated positions is outside a valid range, the original string is returned. Use the
FLATTEN$ function to flatten out the returned token. See also CHANGE$, TOKEN$ and SPLIT.
Examples:
PRINT EXCHANGE$("a b c d \"e f\" g h i j", 8, 5)
PRINT EXCHANGE$("a,b,c,d,e,f,g,h,i,j", 4, 7, ",")
The next example code snippet sorts a delimited string. It uses the Bubble Sort algorithm:
t$ = "Kiev Amsterdam Lima Moscow Warschau Vienna Paris Madrid Bonn
Bern Rome"
total = AMOUNT(t$)
WHILE total > 1
 FOR x = 1 TO total-1
 IF TOKEN$(t$, x) > TOKEN$(t$, x+1) THEN t$ = EXCHANGE$(t$,
x, x+1)
 NEXT
 DECR total
WEND
Note that this is just an example to demonstrate the EXCHANGE$ function. Delimited strings can
be sorted using the native SORT$ function.

EXEC$
EXEC$(command$ [, stdin$[, out]])
Type: function
Executes an operating system command and returns the result to the BaCon program. The exit
status of the executed command itself is stored in the reserved variable RETVAL. Optionally, a
second argument may be used to feed to STDIN. Also optionally, a third argument can be specified

to determine whether all output needs to be captured (0 = default), only stdout (1) or only stderr (2).
See SYSTEM to plainly execute a system command. Example:
result$ = EXEC$("ls -l")
result$ = EXEC$("bc", "123*456" & NL$ & "quit")
PRINT EXEC$("ls xyz123", NULL, 2)

EXIT
EXIT
Type: statement
Exits a SUB or FUNCTION prematurely. Note that functions which are supposed to return a value
will return a 0. String functions will return an empty string.
Also note that it is allowed to write EXIT SUB or EXIT FUNCTION to improve code readability.

EXP
EXP(x)
Type: function
Returns e (base of natural logarithms) raised to the power of x.

EXPLODE$
EXPLODE$(string$, [length [, delimiter$]])
Type: function
Splits a string based on <length> characters and returns the result in a delimited string using the
default delimiter. The <length> parameter is optional. If not specified then the default value is 1.
Also the delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is
assumed. When specified, it may consist of multiple characters.
See also SPLIT to create an array based on a delimiter, MERGE$ to join the components of a
delimited string back to a regular string, and the chapter on delimited string functions for more
information about delimited strings. Example:
PRINT EXPLODE$("Amsterdam", 2)

EXTRACT$
EXTRACT$(x$, y$[, flag])
Type: function
Returns the string defined in <x$> from which the string mentioned in <y$> has been removed. The
optional flag determines if the <y$> should be taken as a regular expression where OPTION
COMPARE establishes case insensitive expression matching. See also REPLACE$.
Examples:
PRINT EXTRACT$("bacon program", "ra")
PRINT EXTRACT$(name$, "e")
PRINT EXTRACT$("a b c", " .* ", TRUE)

FALSE
FALSE
Type: variable
Represents and returns the value of '0'.

FILEEXISTS
FILEEXISTS(filename$)
Type: function
Verifies if <filename$> exists. If the file exists, this function returns 1. Else it returns 0. This
function also can be used to verify if a directory exists. If <filename$> is a symbolic link, it is
dereferenced.

FILELEN
FILELEN(filename$)
Type: function
Returns the size of a file identified by <filename$>. If an error occurs this function returns '-1'. The
ERR$ statement can be used to find out the error if TRAP is set to LOCAL. Example:
length = FILELEN("/etc/passwd")

FILETIME
FILETIME(filename$, type)
Type: function
Returns the timestamp of a file identified by <filename$>, depending on the type of timestamp
indicated in <type>. The type can be one of the following: 0 = access time, 1 = modification time
and 2 = status change time. Example:
stamp = FILETIME("/etc/hosts", 0)
PRINT "Last access: ", MONTH$(stamp), " ", DAY(stamp), ", ",
YEAR(stamp)

FILETYPE
FILETYPE(filename$)
Type: function
Returns the type of a file identified by <filename$>. If an error occurs this function returns '0'. The
ERR$ statement can be used find out which error if TRAP is set to LOCAL. The following values
may be returned:

Value Meaning

0 Error or undetermined

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe (FIFO)

6 Symbolic link

7 Socket

FILL$
FILL$(x, y)
Type: function
Returns an <x> amount of character <y>. The value for y must lie between 0 and 127 in ASCII
mode, or between 0 and 1114111 (0x10FFFF) in case OPTION UTF8 is enabled. Example printing
10 times the character '@':
PRINT FILL$(10, ASC("@"))
Example printing 5 times a smiley character using unicode:
OPTION UTF8 TRUE
PRINT FILL$(5, 0x1F600)
See also COUNT to count the amount of times a character occurs in a string.

FIND
FIND(binary tree, value)
Type: function
Verifies the presence of a value in a binary tree. For more information and examples, see the
chapter on binary trees.

FIRST$
FIRST$(string$, amount [, delimiter$])
Type: function
Retrieves the remaining elements except the last <amount> from a delimited <string$> split by
delimiter$. The delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is
assumed. When specified, it may consist of multiple characters.
If no delimiter is present in the string, this function will return the full <string$>.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE.
See also TAIL$ to obtain elements counting from the end from the delimited string, and HEAD$ to
obtain elements counting from the start. Refer to the chapter on delimited string functions for more
information about delimited strings. Example:
PRINT "Remaining first members: ", FIRST$("Rome Amsterdam Kiev
Bern Paris London", 2)

FLATTEN$
FLATTEN$(txt$ [, groupingchar$])
Type: function
Flattens out a string where the double quote symbol is used to group parts of the string together.
Instead of the double quote symbol a different character can be specified (optional). See also
UNFLATTEN$ for the reverse operation. Examples:
PRINT FLATTEN$("\"Hello \\\"cruel\\\" world\"")
PRINT FLATTEN$(TOKEN$("Madrid,Kiev,\"New York\",Paris", 3, ","))
PRINT FLATTEN$("\'Hello world\'", "'")

FLOOR
FLOOR(x)
Type: function
Returns the rounded down value of x. Note that this function returns a float value. Refer to CEIL
for rounding up.

FOR
FOR var = x TO|DOWNTO y [STEP z]
 <body>
 [BREAK]|[CONTINUE]
NEXT [var]
FOR var$ IN source$ [STEP delimiter$]
 <body>
 [BREAK]|[CONTINUE]
NEXT [var]
Type: statement
With FOR/NEXT a body of statements can be repeated a fixed amount of times.
In the first usage the variable x will be increased (to) or decreased (downto) until y with 1, unless a
STEP is specified. Example:
FOR x = 1 TO 10 STEP 0.5
 PRINT x
NEXT
In the second usage of FOR, the variable <var$> will be assigned the space delimited strings
mentioned in source$. Instead of a space delimiter, some other delimiter can be specified after the
STEP keyword. The delimiter can consist of multiple characters. If the <delimiter$> occurs in
between double quotes, then it is skipped until FOR finds the next one. This behavior can be
changed by setting OPTION QUOTED to FALSE.
To prevent empty results, OPTION COLLAPSE can be set to TRUE (or 1). See also SPLIT to
create an array of delimited strings.
Example:
OPTION COLLAPSE TRUE
FOR x$ IN "Hello cruel world"
 PRINT x$

NEXT
FOR y$ IN "1,2,\"3,4\",5" STEP ","
 PRINT y$
NEXT

FORK
FORK
<child>
[ENDFORK [x]] | [END FORK [x]]
Type: function
Duplicate the current running program in memory. If the return value is 0, then we're in the child
process. If the child process needs an explicit exit then ENDFORK can be used.
If the return value > 0, then we are in the parent process; the actual value is the process ID of the
spawned child.
If the return value < 0, then an error has occurred. See also REAP to detect and cleanup child
processes which have ended, or SIGNAL to prevent occurring zombie processes altogether.
Example:
pid = FORK
IF pid = 0 THEN
 PRINT "I am the child, my PID is:", MYPID
 ENDFORK
ELIF pid > 0 THEN
 PRINT "I am the parent, pid of child:", pid
 REPEAT
 PRINT "Waiting for child to exit"
 SLEEP 50
 UNTIL REAP(pid)
ELSE
 PRINT "Error in fork"
ENDIF

FP
FP (x)
Type: function
Returns the memory address of a function with name 'x'. Example:
SUB Hello
 PRINT "Hello world"
END SUB
DECLARE (*func)() TYPE void
func = FP(Hello)
CALL (*func)()

FREE
FREE x[, y, z, ...]
Type: statement
Releases claimed memory (see also MEMORY). Multiple memory pointers can be provided.
Example:
mem1 = MEMORY(500)
mem2 = MEMORY(100)
FREE mem1, mem2
This statement also can be used to delete individual members from associative arrays:
FREE array$("abc")
Lastly, it can delete all members of an associative array in one step:
FREE array$

FUNCTION
FUNCTION <name> ()|(STRING s, NUMBER i, FLOATING f, VAR v SIZE t) [TYPE <c-type>]
 <body>
 RETURN <x>
ENDFUNC | ENDFUNCTION | END FUNCTION
Type: statement
Defines a function. The variables within a function are visible globally, unless declared with the
LOCAL statement. Instead of the Bacon types STRING, NUMBER and FLOATING for the
incoming arguments, also regular C-types can be used. If no type is specified, then BaCon will
recognize the argument type from the variable suffix. In case no suffix is available, plain NUMBER
type is assumed. With VAR a variable amount of arguments can be defined.
A FUNCTION always returns a value or a string, this should explicitly be specified with the
RETURN statement. If the FUNCTION returns a string, then the function name should end with a
'$' to indicate a string by value. Function names also may end with the '#' or '%' type suffix, to force
a float or integer return type.
Furthermore, it is also possible to explicitly define the type of the return value using the TYPE
keyword.
Examples:
FUNCTION fh2celsius(FLOATING fahrenheit) TYPE float
 PRINT "Calculating Celsius..."
 RETURN (fahrenheit-32)*5/9
ENDFUNCTION
FUNCTION Hello$(STRING name$)
 RETURN "Hello " & name$ & " !"
ENDFUNCTION

GETBYTE
GETBYTE <memory> FROM <handle> [CHUNK x] [SIZE y]
Type: statement
Retrieves binary data into a memory area from a either a file or a device identified by handle, with

optional amount of <x> bytes depending on OPTION MEMTYPE (default amount of bytes = 1).
Also optionally, the actual amount retrieved can be stored in variable <y>. Use PUTBYTE to write
binary data.
Example program:
OPEN prog$ FOR READING AS myfile
 bin = MEMORY(100)
 GETBYTE bin FROM myfile SIZE 100
CLOSE FILE myfile

GETENVIRON$
GETENVIRON$(var$)
Type: function
Returns the value of the environment variable 'var$'. If the environment variable does not exist, this
function returns an empty string. See SETENVIRON to set an environment variable.

GETFILE
GETFILE <var> FROM <dirhandle> [FTYPE <var>]
Type: statement
Reads a file from an opened directory. Subsequent reads return the files in the directory. If there are
no more files then an empty string is returned. Optionally, the FTYPE keyword can store the actual
file type of the file. The resulting file type numbering follows the same schedule as the FILETYPE
function. Note that this optional feature is only supported on a few file systems, like btrfs, ext2,
ext3, ext4, recent xfs, etc. Example:
OPEN "/tmp" FOR DIRECTORY AS mydir
REPEAT
 GETFILE myfile$ FROM mydir FTYPE thetype
 PRINT "File found: '", myfile$, "' - type: ", thetype
UNTIL ISFALSE(LEN(myfile$))
CLOSE DIRECTORY mydir

GETKEY
GETKEY
Type: function
Returns a key from the keyboard without waiting for <RETURN>-key. See also INPUT and WAIT.
Example:
PRINT "Press <escape> to exit now..."
key = GETKEY
IF key = 27 THEN
 END
END IF

GETLINE
GETLINE <variable$> FROM <handle>
Type: statement
Reads a line of data from a memory area identified by <handle> into a string variable. The memory
area can be opened in streaming mode using the the OPEN statement (see also the chapter on
ramdisks and memory streams). A line of text is read until the next newline character. Example:
GETLINE text$ FROM mymemory
See also PUTLINE to store lines of text into memory areas.

GETPEER$
GETPEER$(x)
Type: function
Gets the IP address and port of the (remote) host connected to a handle returned by OPEN FOR
NETWORK or OPEN FOR SERVER. Example in case of a client connection:
website$ = "www.basic-converter.org"
OPEN website$ & ":443" FOR NETWORK AS mynet
PRINT "Remote IP is: ", GETPEER$(mynet)
Example when setting up a TCP server:
OPEN "localhost:51000" FOR SERVER AS mynet
PRINT "Peer is: ", GETPEER$(mynet)
CLOSE SERVER mynet

GETX / GETY
GETX
GETY
Type: function
Returns the current x and y position of the cursor. An ANSI compliant terminal is required. See
GOTOXY to set the cursor position.

GLOBAL
GLOBAL <var>[,var2,var3,...] [TYPE]|ASSOC|TREE <c-type> | [ARRAY <size>]
Type: statement
Explicitly declares a variable to a C-type. The ASSOC keyword is used to declare associative
arrays. The TREE keyword is used to declare binary trees. This is always a global declaration,
meaning that variables declared with the GLOBAL keyword are visible in each part of the program.
Use LOCAL for local declarations.
The ARRAY keyword is used to define a dynamic array, which can be resized with REDIM at a
later stage in the program.
Optionally, within a SUB or FUNCTION it is possible to use GLOBAL in combination with
RECORD to define a record variable which is visible globally.
GLOBAL x TYPE float
GLOBAL q$

GLOBAL new_array TYPE float ARRAY 100
GLOBAL name$ ARRAY 25
Multiple variables of the same type can be declared at once, using a comma separated list. In case
of pointer variables the asterisk should be attached to the variable name:
GLOBAL x, y, z TYPE int
GLOBAL *s, *t TYPE long

GOSUB
GOSUB <label>
Type: statement
Jumps to a label defined elsewhere in the program (see also the LABEL statement). When a
RETURN is encountered, the program will return to the last invoked GOSUB and continue from
there. Note that a SUB or FUNCTION also limits the scope of the GOSUB; it cannot jump outside.
Example:
PRINT "Where are you?"
GOSUB there
PRINT "Finished."
END
LABEL there
 PRINT "In a submarine!"
 RETURN

GOTO
GOTO <label>
Type: statement
Jumps to a label defined elsewhere in the program. Note that a SUB or FUNCTION limits the scope
of the GOTO; it cannot jump outside. See also the LABEL statement.

GOTOXY
GOTOXY x, y
Type: statement
Puts cursor to position x,y where 1,1 is the upper left of the terminal screen. An ANSI compliant
terminal is required. Example:
CLEAR
FOR x = 5 TO 10
 GOTOXY x, x
 PRINT "Hello world"
NEXT
GOTOXY 1, 12

GUIDEFINE
GUIDEFINE(string$)

Type: function
Defines a graphical user interface according to an object/property model. Each object (e.g. widget)
should occur between curly brackets and should contain properties known to the used toolkit. By
default, BaCon will assume the Xaw toolkit, but this can be overridden by the PRAGMA GUI
statement. The GUIDEFINE function can only occur once in a BaCon program. The return value is
a unique handle which should be used in subsequent GUI functions. For each object, the 'type and
'name' fields are obligatory. See also the chapter on GUI programming for more information. For
example:
id = GUIDEFINE("{ type=window name=window
resources=\"*font:lucidasans-18\" XtNtitle=\"Hello world
application\" }"

GUIEVENT$
GUIEVENT$(handle [,TRUE])
Type: function
Executes the mainloop of the GUI and returns the name of the widget or string from the callback
definition. For example:
WHILE TRUE
 SELECT GUIEVENT$(gui)
 CASE "window"
 BREAK
 CASE "button"
 INCR clicked
 ENDSELECT
WEND
The optional second argument allows returning a pointer to data which was passed to the internal
callback function.

GUIFN
GUIFN(id, name$, function [, argn])
Type: function
Calls a GUI helper function based on a previously defined function pointer. It allows to omit
specific type casting and does not perform argument type checks allowing more code flexibility.
For example:
LOCAL (*show)() = XtPopup TYPE void
CALL GUIFN(id, "window", show, XtGrabNonexclusive)

GUIGET
GUIGET(id, name$, property$, &variable)
Type: function
Fetches a value set by <property$> from a widget with <name$> in a GUI identified by <id>. The
<variable> should be a pointer variable, also in case of strings. For example:
CALL GUIGET(dialog, "dialog", XtNvalue, &data)

GUISET
GUISET(id, name$, property$, variable)
Type: function
Sets a value for <property$> regarding widget with <name$> in a GUI identified by <id>. For
example:
CALL GUISET(dialog, "label", XtNjustify, XtJustifyLeft)

GUIWIDGET
GUIWIDGET(name$)
Type: function
Returns the memory address of a widget based on <name$>. This can come handy when using
foreign GUI functions natively.

HASBOM
HASBOM(string$)
Type: function
Determines whether the string contains a UTF8 byte order mark. Some UTF8 text files are shipped
with a first three bytes of 0xEF 0xBB 0xBF. The byte order mark is an optional byte sequence to
indicate that the text contains UTF8 encoding. If <string$> contains such byte order mark
HASBOM will return TRUE (1). Otherwise it will return FALSE (0). See also EDITBOM $ and the
chapter on UTF8 encoding.

HASDELIM
HASDELIM(string$ [,delimiter$])
Type: function
Determines whether the string contains a delimiter or not. If the delimiter is not present, FALSE (0)
is returned. Otherwise this function returns the position of the first delimiter in the string.
The delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is assumed.
When specified, it may consist of multiple characters. If delimiter$ occurs between double quotes in
string$ then it is ignored. Refer to the chapter on delimited string functions for more information
about delimited strings.
For regular strings, see INSTR.

HASH
HASH(data [, length])
Type: function
Returns a hash from string data or memory data. The optional <length> specifies the amount of
bytes to be hashed. If no length is specified, the HASH function will use each byte until a 0 is
encountered (like in C strings). On 64bit systems the returned value is 64bit, on 32bit systems the
returned value is 32bit.

The hash algorithm used is based on the Fowler-Noll-Vo algorithm (FNV1a). Example to create a
hash from a string:
PRINT HASH("Hello world") FORMAT "%lu\n"
Example to create a hash from data in memory:
mem = MEMORY(16)
FOR x = 0 TO 15
 POKE mem+x, RANDOM(256)
NEXT
PRINT HASH(mem, 16) FORMAT "%lu\n"

HEAD$
HEAD$(string$, amount [, delimiter$])
Type: function
Retrieves the first <amount> elements from a delimited string$ split by delimiter$. The delimiter$
is optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified,
it may consist of multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE.
See also LAST$ to obtain the remaining elements, and TAIL$ to obtain elements counting from the
end of the delimited string. Refer to the chapter on delimited string functions for more information
about delimited strings. Example:
PRINT "First 2 members: ", HEAD$("Rome Amsterdam Kiev Bern Paris
London", 2)

HEX$
HEX$(x)
Type: function
Calculates the hexadecimal value of x. Returns a string with the result. See also DEC to convert
back to decimal.

HOST$
HOST$(name$)
Type: function
When name$ contains a hostname this function returns the corresponding IP address. If name$
contains an IP address the corresponding hostname is returned. If the name or IP address cannot be
resolved an error is generated. Examples:
PRINT HOST$("www.google.com")
PRINT HOST$("127.0.0.1")

HOSTNAME$
HOSTNAME$()
Type: function

Retrieves the actual hostname of the current system where the program is running. Example:
PRINT "My hostname is: ", HOSTNAME$

HOUR
HOUR(x)
Type: function
Returns the hour (0-23) where x is the amount of seconds since January 1, 1970.

IF
IF <expression> THEN
 <body>
[ELIF]
 <body>
[ELSE]
 [body]
ENDIF | END IF | FI
Type: statement
Execute <body> if <expression> is true. If <expression> is not true then run the optional ELSE
body. Multiple IF's can be written with ELIF. The IF construction should end with ENDIF or END
IF or FI. Example:
a = 0
IF a > 10 THEN
 PRINT "This is strange:"
 PRINT "a is bigger than 10"
ELSE
 PRINT "a is smaller than 10"
END IF
The IF statement also allows comparing strings. The textual order is determined by the standard
ASCII table. As a result, capital letters, which occur in the ASCII table before the small letters, are
considered to be 'smaller' than regular letters.
name$ = "BaCon"
IF name$ > "basic" THEN
 PRINT "Not printed"
ELSE
 PRINT "This is correct!"
END IF
Equations allow the BETWEEN operator both for numbers and strings:
IF "c" BETWEEN "basic"; "pascal" THEN PRINT "This is C"
If only one function or statement has to be executed, then the if-statement also can be used without
a body. For example:
IF age > 18 THEN PRINT "You are an adult"
ELSE INPUT "Your age: ", age
It is not allowed to mix an IF without a body and an ELSE which contains a body, or v.v. For
example, the following is not allowed:

IF year > 1969 THEN PRINT "You are younger"
ELSE
 PRINT "You are older"
ENDIF

IIF / IIF$
IIF(expression, true[, false])
IIF$(expression, true[, false])
Type: function
The inline IF behaves similar to a regular IF, except that it is used as a function. The first argument
contains the expression to be evaluated, the second argument will be returned when the expression
is true, and the optional last argument will be returned when the expression is false.
The inline IF function also allows comparing strings. The textual order is determined by the
standard ASCII table. As a result, capital letters, which occur in the ASCII table before the small
letters, are considered to be 'smaller' than regular letters.
If the returned values are numeric, a plain IIF must be used. If strings are returned, then IIF$ should
be used. See also LOOP$ for inline loops. Examples:
nr = IIF(1 <> 2, 10, 20)
answer$ = IIF$(2 + 2 = 5, "Correct", "Wrong")
PRINT IIF$(a$ = "B", "Yes it is")
PRINT IIF(x BETWEEN y;z, 1, -1)

IMPORT
IMPORT <function[(type arg1, type arg2, ...)]> FROM <library> TYPE <type> [ALIAS word]
Type: statement
Imports a function from a C library defining the type of return value. Optionally, the type of
arguments can be specified. Also optionally it is possible to define an alias under which the
imported function will be known to BaCon.
When the library name is 'NULL', a function will be imported from the program itself. In such
situation, the ALIAS keyword is obligatory. Note that the program must be compiled with a linker
flag like '-export-dynamic' (GCC) or '-rdynamic' (TCC) to make the target function visible for
IMPORT.
An imported library can also be closed afterwards by using CLOSE LIBRARY. This will unload
any symbols from the current program and release the library. It is mandatory to close a library
when symbols need to be reloaded starting from the first IMPORT statement.
Examples:
IMPORT "ioctl" FROM "libc.so" TYPE int
IMPORT "gdk_draw_line(long, long, int, int, int, int)" FROM
"libgdk-x11-2.0.so" TYPE void
IMPORT "fork" FROM "libc.so" TYPE int ALIAS "FORK"
IMPORT "atan(double)" FROM "libm.so" TYPE double ALIAS
"arctangens"
IMPORT "MyFunc(void)" FROM NULL TYPE int ALIAS "Othername"
CLOSE LIBRARY "libm.so"

INBETWEEN$
INBETWEEN$(haystack$, lm$, rm$ [,flag])
Type: function
This function returns a substring from <haystack$>, delimited by <lm$> on the left and <rm$> on
the right. The delimiters may contain multiple characters. They are not part of the returned result.
The <flag> is optional (default value is 0) and specifies if <rm$> should either indicate the most
right match (greedy indication, flag=1), or should return a balanced match (flag=2). See also
OUTBETWEEN$. Note that OPTION COLLAPSE has no impact on this function. Example usage:
PRINT INBETWEEN$("Lorem ipsum dolor sit amet", "ipsum", "sit")
PRINT INBETWEEN$("<p>Chapter one.</p>", "<p>", "</p>")
a$ = INBETWEEN$("yes no 123 yes 456 yes", "no", "yes", TRUE)

INCLUDE
INCLUDE <filename>[, func1, func2, ...]
Type: statement
Adds a external BaCon file to current program. Includes may be nested. The file name extension
may be omitted. Optionally, it is possible to specify which particular functions in the included file
need to be added. Examples:
INCLUDE "beep.bac"
INCLUDE "canvas"
INCLUDE "hug", INIT, WINDOW, DISPLAY

INCR
INCR <x>[, y]
Type: statement
Increases variable <x> with 1. Optionally, the variable <x> can be increased with <y>.

INDEX
INDEX(<array>, <value> [, flag])
Type: function
This function looks up a <value> in <array> and returns the position in the array where the value
was found. If the value was not found, then this function returns 0.
By default, BaCon will perform a plain linear lookup. If the optional [flag] is set to TRUE, then
BaCon assumes the array is ordered and the lookup will use the binary search algorithm, resulting
in a better performance. This function only works for static and dynamic arrays. For associative
arrays, refer to INDEX$. Examples:
DECLARE data[] = { 0, 1, 3, 5, 7, 8, 12, 30, 44, 55, 61 }
PRINT INDEX(data, 61, TRUE)
DECLARE floats#[] = { 3.2, 5.3, 7.5, 8.6, 12.2, 30.3, 55.5, 61.6}
PRINT INDEX(floats#, 30.3)
DECLARE string$[] = { "a", "b", "c", "d", "e" }

PRINT INDEX(string$, "c")
DECLARE nr TYPE int ARRAY 5
nr[0] = 1
nr[1] = 2
nr[2] = 6
nr[3] = 8
nr[4] = 10
PRINT INDEX(nr, 10)

INDEX$
INDEX$(<associative_array>, <value>)
Type: function
This function looks up a <value> in <associative_array> and returns the index in the array where
the value was found. If the value was not found, then this function returns an empty string. If
INDEX$ refers to a value which occurs multiple times, the returned index is the first inserted into
the associative array. Example:
DECLARE data$ ASSOC STRING
data$("name") = "BaCon"
data$("place") = "Internet"
data$("language") = "BASIC"
PRINT INDEX$(data$, "Internet")

INPUT
INPUT [text[, ... ,]<variable[$]>
Type: statement
Interactive input from the user. If the variable ends with a '$' then the input is considered to be a
string. Otherwise it will be treated as numeric. Example:
INPUT a$
PRINT "You entered the following: ", a$
The input-statement also can print text. The input variable always must be present at the end of the
line. Example:
INPUT "What is your age? ", age
PRINT "You probably were born in ", YEAR(NOW) - age
The INPUT statement by nature is a blocking statement. Note that INPUT always will chop off a
trailing newline from text captured into a string variable, if there is any.
The OPTION INPUT parameter can be used to define where INPUT should cut off the incoming
stream from STDIN. This is especially useful in CGI programs, for example:
OPTION INPUT CHR$(4)
INPUT data$

INSERT$
INSERT$(source$, x, string$)
Type: function

Inserts the string$ into source$ at position <x>. The letters in source$ starting from position <x> are
pushed forward. If x <= 1 then string$ is prepended to source$. If position > length of source$ then
string$ is appended to source$. Example:
PRINT INSERT$("Hello world", 7, "cruel ")

INSTR
INSTR(haystack$, needle$ [,z])
Type: function
Returns the position where needle$ begins in haystack$, optionally starting at position z. If not
found then this function returns the value '0'. See also TALLY to count the occurrences of needle$.
position = INSTR("Hello world", "wo")
PRINT INSTR("Don't take my wallet", "all", 10)

INSTRREV
INSTRREV(haystack$, needle$ [,z])
Type: function
Returns the position where needle$ begins in haystack$, but start searching from the end of
haystack$, optionally at position z also counting from the end. The result is counted from the
beginning of haystack$. If not found then this function returns the value '0'.
See also OPTION STARTPOINT to return the result counted from the end of haystack$.

INTL$
INTL$(x$)
Type: function
Specifies that <x$> should be taken into account for internationalization. All strings which are
surrounded by INTL$ will be candidate for the template catalog file. This file is created when
BaCon is executed with the '-x' switch. See also the chapter about internationalization and the
TEXTDOMAIN statement.

INVERT
INVERT(<assoc_array>)
Type: function
Swaps the keys and values in an associative array. In case multiple keys hold the same value, a
collision occurs. In such case, the last occurrence of a value is inverted and the INVERT function
returns the amount of collisions. If all values are unique, then this function returns 0.
Note that values of numerical associative arrays will silently be converted to strings and that the key
names will be converted back to the numerical type of the array. So if the keys contain regular
strings then these will be converted to 0 in case of numerical arrays. Example:
DECLARE example ASSOC int
example("10") = 33
example("20") = 12
example("30") = 44

example("40") = 44
PRINT INVERT(example)
PRINT OBTAIN$(example)

ISASCII
ISASCII(string$)
Type: function
Returns TRUE (1) if <string$> only contains ASCII data. If not, FALSE (0) is returned. See also
TOASCII$. Example:
PRINT ISASCII("hello world")

ISFALSE
ISFALSE(x)
Type: function
Verifies if x is equal to 0.

ISKEY
ISKEY(array, string$)
Type: function
Returns TRUE (1) if <string$> is defined as a key in the associative <array>. If not, FALSE (0) is
returned. For static and dynamic arrays, refer to INDEX. See also NRKEYS to find the amount of
keys in an associative array. Example:
DECLARE array ASSOC int
array("hello") = 25
array("world") = 30
array("compound", "key") = 40
PRINT ISKEY(array, "goodbye")
PRINT ISKEY(array, "world")
PRINT ISKEY(array, "compound", "key")

ISTOKEN
ISTOKEN(string$, token$ [, delimiter$])
Type: function
Verifies if the <token$> occurs in a delimited <string$>. The delimiter$ is optional. If it is omitted,
then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple
characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE.
If token$ was found in string$, then this function returns the actual position of the token in the
delimited string, counting from the left. Otherwise it returns '0'. See also TOKEN$. Example:
string$ = "Kiev Amsterdam Lima Moscow Warschau Vienna Paris Madrid
Bonn Bern Rome"

PRINT ISTOKEN(string$, "Paris")

ISTRUE
ISTRUE(x)
Type: function
Verifies if x is not equal to 0.

ISUTF8
ISUTF8(string$)
Type: function
Returns TRUE (1) if <string$> is compliant with UTF8 encoding. If not, FALSE (0) is returned.
Note that also random binary data can accidentally be compliant to UTF8 and that ASCII data
always is compliant to UTF8. See also ISASCII. Example:
PRINT ISUTF8("Después mañana voy para mi casa")

JOIN
JOIN <array> [BY <sub>] TO <string> [SIZE <value>]
Type: statement
This statement can join elements of a one dimensional string array into a single string. The optional
argument in BY defines the delimiter string in between the array elements. If BY is omitted, then
no delimiter is put in between the concatenated array elements. The result is stored in the <string>
argument mentioned by the TO keyword. Optionally, the total amount of array elements to be
joined can be defined in SIZE. If SIZE is omitted then all elements in the array will be joined
together. See also SPLIT to do the opposite. Example:
DECLARE name$[3]
name$[0] = "Hello"
name$[1] = "cruel"
name$[2] = "world"
JOIN name$ BY " " TO result$ SIZE 3

LABEL
LABEL <label>
Type: statement
Defines a label which can be jumped to by using a GOTO, GOSUB or CATCH GOTO statement.
A label may not contain spaces.
A label can appear amid existing DATA statements. In such case, RESTORE may refer to a label
so READ will start reading data from that point. The label must be unique throughout the whole
program because DATA statements are visible globally.

LAST$
LAST$(string$, amount [, delimiter$])

Type: function
Retrieves the remaining elements except the first <amount> from a delimited string$ split by
delimiter$. The delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is
assumed. When specified, it may consist of multiple characters.
If no delimiter is present in the string, this function will return the full <string$>.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also HEAD$ to get the first element(s), and
the chapter on delimited string functions for more information about delimited strings. Example:
PRINT "Remaining members: ", LAST$("Rome Amsterdam Kiev Bern Paris
London", 1)

LCASE$
LCASE$(x$)
Type: function
Converts x$ to lowercase characters and returns the result. Example:
PRINT LCASE$("ThIs Is All LoWeRcAsE")

LEFT$
LEFT$(string$[, amount])
Type: function
Returns <amount> characters from the left of <string$>. The <amount> argument is optional. If
omitted, then LEFT$ by default will return 1 character. See also RIGHT$ and MID$.

LEN
LEN(x$)
Type: function
Returns the length of ASCII string x$. If OPTION UTF8 is enabled, then the LEN function will
return the length of UTF8 formatted strings correctly as well. See also ULEN.

LET
LET <var> = <value> | <expr>
Type: statement
Assigns a value or result from an expression to a variable. The LET statement may be omitted.
Example:
LET a = 10

LINENO
LINENO
Type: variable
Contains the current line number of the program. This variable mainly is used for debugging
purposes.

LOAD$
LOAD$(filename$)
Type: function
Returns a string with the content of the specified text file in one step. See BLOAD for loading
binary files in one step, and OPEN/WRITELN/READLN/CLOSE to read and write to a file using a
filehandle. Example:
content$ = LOAD$("bacon.bac")
PRINT "Content of 'bacon.bac': ", content$

LOCAL
LOCAL <var>[,var2,var3,...] [TYPE]|ASSOC|TREE <c-type> | [ARRAY <size>] [STATIC]
Type: statement
This statement only has sense within functions, subroutines or records. It defines a local variable
<var> with C type <type> which will not be visible to other functions, subroutines or records, nor
to the main program.
If the TYPE keyword is omitted then variables are assumed to be of 'long' type. If TYPE is omitted
and the variable name ends with a '$' then the variable will be a string.
The ARRAY keyword is used to define a dynamic array, which can be resized with REDIM at a
later stage in the program. The optional STATIC keyword allows the array to be returned from a
function.
Examples:
LOCAL tt TYPE int
LOCAL q$
LOCAL new_array TYPE float ARRAY 100
LOCAL name$ ARRAY 25
LOCAL key$ ASSOC STRING
Multiple variables of the same type can be declared at once, using a comma separated list. In case
of pointer variables the asterisk should be attached to the variable name:
LOCAL x, y, z TYPE int
LOCAL *s, *t TYPE long

LOG
LOG(x)
Type: function
Returns the natural logarithm of x.

LOOKUP
LOOKUP <assoc> TO <array$> [SIZE <variable>][STATIC]|[SORT[DOWN]]
Type: statement
Retrieves all index names created in an associative array. The results are stored in <array$>. As it
sometimes is unknown how many elements this resulting array will contain, the array should not be

declared explicitly. Instead, LOOKUP will declare the result array dynamically.
If LOOKUP is being used in a function or sub, then <array> will have a local scope. Else <array>
will be visible globally, and can be accessed within all functions and subs.
The optional SORT keyword will first sort the elements in the associative array before returning the
corresponding indexes. A sort in descending order can be accomplished by adding the DOWN
keyword. As with the SORT statement, string and numeric C-types are supported.
The total amount of elements created in this array is stored in the optional <variable>. This variable
can be declared explicitly using LOCAL or GLOBAL. See also OBTAIN$ to store index names
into a delimited string. Example:
LOOKUP mortal TO men$ SIZE amount
FOR x = 0 TO amount - 1
 PRINT men$[x]
NEXT
The optional STATIC keyword allows the created <array> to be returned from a function.

LOOP
LOOP([variable,] nr, expression)
Type: function
This is an inline loop which returns the sum of the repeatedly evaluated <expression> as a numeric
value. The optional <variable> must be a numeric variable and <nr> defines how many times the
<expression> is carried out. If <variable> is not present then the anonymous variable "_" will be
used. It is not allowed to use nested LOOP constructs or to use LOOP multitple times in the same
statement. Such code will generate a syntax error during conversion time. See also FILL$, or
COIL$ for an inline loop creating delimited strings, or the inline if IIF$.
Example to add all numbers mentioned in a string variable:
a$ = "123456789"
PRINT LOOP(LEN(a$), VAL(MID$(a$, _, 1)))

LOOP$
LOOP$([variable,] nr, expression$)
Type: function
This is an inline loop which returns the result of the repeatedly evaluated <expression$> as a
concatenated regular string. The optional <variable> must be a numeric variable and <nr> defines
how many times the <expression$> is carried out. If <variable> is not present then the anonymous
variable "_" will be used. It is not allowed to use nested LOOP$ constructs or to use LOOP$
multitple times in the same statement. Such code will generate a syntax error during conversion
time. See also FILL$, or COIL$ for an inline loop creating delimited strings, LOOP for numeric
calculations, or the inline if IIF$.
Example to get all letters in the Latin alphabet:
PRINT LOOP$(i, 26, CHR$(96+i))
Example to print all elements in a delimited list using the anonymous variable "_":
PRINT LOOP$(AMOUNT(list$), TOKEN$(list$, _))

MAKEDIR
MAKEDIR <directory>
Type: statement
Creates an empty directory. Parent directories are created implicitly. If the directory already exists
then it is recreated. Errors like write permissions, disk quota issues and so on can be captured with
CATCH. Example:
MAKEDIR "/tmp/mydir/is/here"

MAP
MAP <array1> [,array2, ...array<n>] BY <function> TO <array> [SIZE <const|variable>]
[STATIC]
Type: statement
Performs a mapping of a function towards one or more arrays, storing the results in another array.
All arrays shall have one dimension. The target array can be declared previously with the
DECLARE or LOCAL statement. Using LOCAL in combination with the optional STATIC
keyword, the array is created so it can be returned from a function. However, if there is no explicit
previous declaration, then the MAP statement will declare the target array implicitly. The STATIC
keyword can be used here as well.
When the target array is declared implicitly, the following logic applies: if MAP is being used in a
function or sub, then the target <array> will have a local scope. Else <array> will be visible
globally, and can be accessed within all functions and subs.
The <function> can either be defined by DEF FN, or it can point to a regular function. Only the
function name should be provided, not the arguments. Note that the amount of arguments must be
the same as the amount of arrays to which the <function> is mapped.
The SIZE argument is optional. When SIZE is not provided, MAP will apply the <function> to all
elements in the given arrays. Example:
DEF FN addition(x, y) = x+y
MAP array1, array2 BY addition TO result SIZE 5
In this example, the first 5 elements of array1 and array2 are used for the 'addition' function. The
results are stored in the array 'result'. See also SUM for adding members within the same array.
String arrays are supported as well:
word$ = "Hello world this is a program"
DEF FN func(x$) = LEN(x$)
SPLIT word$ TO letter$ SIZE total
MAP letter$ BY func TO new SIZE total
Here, each word is put into an array, after which the length of the individual words is being
calculated. The results are then stored in another array.

MATCH
MATCH(string$, pattern$, [amount [,delimiter$]])
Type: function
Compares the delimited elements between <string$> and <pattern$>. By default, the amount of
elements to compare is determined by the amount of elements in <string$>. Optionally, the

<amount> of elements to be compared can be provided explicitly. The value -1 means the default
amount of elements in <string$>.
The <pattern$> can use the wildcards '?' and '*'. In case of '?' a single element will be matched. The
'*' wildcard can be used to match multiple elements. To match an actual '?' or '*' in <string$> the
wildcard symbol has to be escaped in <pattern$> or should be written between double quotes. The
use of multiple wildcards in <pattern$> is allowed.
Both the <string$> and the <pattern$> should be delimited by the same delimiter$. The delimiter$
argument is optional. If it is omitted, then the definition from OPTION DELIM is assumed. When
specified, it may consist of multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Examples:
IF MATCH("a b c d", "a b e f", 2) THEN PRINT "Partially the same"
IF MATCH("a b c d", "a b *") THEN PRINT "Matched"
IF NOT(MATCH("a b c d", "a b ? c")) THEN PRINT "Not matched"
IF MATCH("a b \"c d\" d", "a b * d") THEN PRINT "Matched"
IF MATCH("a b * d", "a b * d") THEN PRINT "Matched"
IF MATCH("a,b,c,d", "a,b,c,d", -1, ",") THEN PRINT "Matched"

MAX / MAX$
MAX(x, y)
MAX$(x$, y$)
Type: function
Returns the maximum value of two numbers or two strings. In case of strings, this function will
follow the ASCII table to determine the 'maximum' string. This means that small letters, which
occur in the ASCII table after capital letters, will have priority. Example:
PRINT MAX(3, PI)
PRINT MAX$("hello", "HELLO")

MAXNUM
MAXNUM(type)
Type: function
This function returns the maximum value possible for a certain type. Example:
PRINT MAXNUM(short)
PRINT MAXNUM(long) FORMAT "%ld\n"

MAXRANDOM
MAXRANDOM
Type: variable
Reserved variable which contains the maximum value RND can generate. The actual value may
vary on different operating systems.

ME$
ME$
Type: function
Returns the full path of the current active program. See also CURDIR$ and REALPATH$.

MEMCHECK
MEMCHECK(memory address)
Type: function
Verifies if <memory address> is accessible, in which case a '1' is returned. If not, this function
returns a '0'. Example:
IF MEMCHECK(mem) THEN POKE mem, 1234

MEMORY
MEMORY(x)
Type: function
Claims memory of x size, returning a handle to the address where the memory block resides. Use
FREE to release the memory. Note that OPTION MEMTYPE can influence the type of memory
created. The following example creates a memory area to store integers:
OPTION MEMTYPE int
area = MEMORY(100)
Effectively, this will provide a memory area of 100 times the length of an integer.

MEMREWIND
MEMREWIND <handle>
Type: statement
Returns to the beginning of a memory area opened with <handle>.

MEMTELL
MEMTELL(handle)
Type: function
Returns the current position in the memory area opened with <handle>.

MERGE$
MERGE$(string$ [, delimiter$])
Type: function
Merges the components of a delimited string to a regular string. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of
multiple characters.
See also EXPLODE$ to create a delimited string, and the chapter on delimited string functions for
more information about delimited strings. Example:
PRINT MERGE$("A m s t e r d a m")

MID$
MID$(x$, y, [z])
Type: function
Returns z characters starting at position y in x$. If y is a negative number, then start counting the
position from the end of x$. The parameter 'z' is optional. When this parameter is 0, negative or
omitted, then everything from position 'y' until the end of the string is returned. See also RIP$ for
the complement of MID$. Example:
txt$ = "Hello cruel world"
PRINT MID$(txt$, 7, 5)
PRINT MID$(txt$, -11)
PRINT MID$(txt$, 12, -1)

MIN / MIN$
MIN(x, y)
MIN$(x$, y$)
Type: function
Returns the minimum value of two numbers or two strings. In case of strings, this function will
follow the ASCII table to determine the 'minimum' string. This means that capital letters, which
occur in the ASCII table before the small letters, will have priority. Example:
PRINT MIN(3, PI)
PRINT MIN$("hello", "HELLO")

MINUTE
MINUTE(x)
Type: function
Returns the minute (0-59) where x is amount of seconds since January 1, 1970.

MOD
MOD(x, y)
Type: function
Returns the modulo of x divided by y.

MONTH
MONTH(x)
Type: function
Returns the month (1-12) in a year, where x is the amount of seconds since January 1, 1970.

MONTH$
MONTH$(x)

Type: function
Returns the month of the year as string in the system's locale ("January", "February", etc), where x
is the amount of seconds since January 1, 1970.

MYPID
MYPID
Type: function
Returns the process ID of the current running program.

NE
x NE y
Type: operator
Checks if x and y are not equal. Instead, ISNOT can be used as well to improve code readability.
The NE and ISNOT operators only work for numerical comparisons.
Next to these, BaCon also accepts the '!=' and '<>' constructs for comparison. These work both for
numerical and string comparisons. See also EQ.

NL$
NL$
Type: variable
Represents the New Line as a string.

NNTL$
NNTL$(x$, y$, value)
Type: function
Specifies that <x$> should be taken into account for internationalization. This is a variation to
INTL$. With NNTL$ singularities and multitudes can be specified, which are candidate for the
template catalog file. This file is created when BaCon is executed with the '-x' switch. See also
TEXTDOMAIN and INTL$ and the chapter on internationalization. Example:
LET x = 2
PRINT x FORMAT NNTL$("There is %ld green bottle\n", "There are %ld
green bottles\n", x)

NOT
NOT(x)
Type: function
Returns the negation of x.

NOW
NOW

Type: function
Returns the amount of seconds since January 1, 1970.

NRKEYS
NRKEYS(array)
Type: function
Returns the amount of index names (keys) in the associative <array>. See ISKEY to find out if a
key exists in an associative array. Refer to UBOUND for other types of arrays. Example:
DECLARE array ASSOC int
array("hello") = 25
array("world") = 30
PRINT NRKEYS(array)

OBTAIN$
OBTAIN$(assoc$ [,delimiter$ [, sort]])
Type: function
Retrieves all index names from an associative array and returns a delimited string split by
delimiter$. Multiple indexes in the same element are returned space separated. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it
may consist of multiple characters. When NULL, the function will take the default delimiter as
defined by OPTION DELIM.
The optional <sort> argument will first sort the values of the associative array before retrieving the
index names, where TRUE will sort ascending and FALSE will sort descending.
See the chapter on delimited string functions for more information about delimited strings. See also
LOOKUP to store index names from an associative array into a regular array. Example:
PRINT OBTAIN$(AssocArray, ",")
PRINT OBTAIN$(mydata, NULL, TRUE)

ODD
ODD(x)
Type: Function
Returns 1 if x is odd, else returns 0.

ON
ON x <GOTO label1 [, label2[, label<x>]]>|<CALL func1 [, func2 [, funcx]]>
Type: statement
Jump to a label or function based on the value of x. When x is 1 then the first item is chosen, when
x is 2 the second item and so on. When x has a higher value than the available labels this statement
is ignored. Example:
ON x GOTO a, b
PRINT "No label found"
END

LABEL a
 PRINT "a"
 END
LABEL b
 PRINT "b"
 END
Other example using functions, adding brackets to the called function name is optional:
ON ISTOKEN(list$, item$) CALL setx, sety(), print_str(str$)

OPEN
OPEN <file|dir|address> FOR READING|WRITING|APPENDING|READWRITE|
DIRECTORY|NETWORK [FROM address[:port]]|SERVER|MEMORY|DEVICE AS
<handle>
Type: statement
When used with READING, WRITING, APPENDING or READWRITE, this statement opens a
file assigning a handle to it. The READING keyword opens a file for read-only, the WRITING for
writing, APPENDING to append data and READWRITE opens a file both for reading and writing.
Example:
OPEN "data.txt" FOR READING AS myfile
WHILE NOT(ENDFILE(myfile)) DO
 READLN txt$ FROM myfile
 IF NOT(ENDFILE(myfile)) THEN
 PRINT txt$
 ENDIF
WEND
CLOSE FILE myfile
When used with DIRECTORY a directory is opened as a stream. Subsequent reads will return the
files in the directory. Example:
OPEN "." FOR DIRECTORY AS mydir
REPEAT
 GETFILE myfile$ FROM mydir
 PRINT "File found: ", myfile$
UNTIL ISFALSE(LEN(myfile$))
CLOSE DIRECTORY mydir
When used with NETWORK a network address is opened as a stream. Optionally, the source IP
address and port can be specified using FROM.
OPEN "www.google.com:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" TO mynet
REPEAT
 RECEIVE dat$ FROM mynet
 total$ = total$ & dat$
UNTIL ISFALSE(WAIT(mynet, 500))
PRINT total$
CLOSE NETWORK mynet
When used with SERVER the program starts as a server to accept incoming network connections.

When invoked multiple times in TCP mode using the same host and port, OPEN SERVER will not
create a new socket, but accept another incoming connection. Instead of specifying an IP address,
also the Unix wildcard '*' can be used to listen to all interfaces. See also OPTION NETWORK to
set the network protocol.
OPEN "*:51000" FOR SERVER AS myserver
WHILE NOT(EQUAL(LEFT$(dat$, 4), "quit")) DO
 RECEIVE dat$ FROM myserver
 PRINT "Found: ", dat$
WEND
CLOSE SERVER myserver
When used with MEMORY a memory area can be used in streaming mode.
data = MEMORY(500)
OPEN data FOR MEMORY AS mem
PUTLINE "Hello cruel world" TO mem
MEMREWIND mem
GETLINE txt$ FROM mem
CLOSE MEMORY mem
PRINT txt$
When used with DEVICE, a file or device can be opened in any mode. The open mode can set by
using OPTION DEVICE. Use PUTBYTE or GETBYTE to write and retrieve data from the opened
device.
OPEN "/dev/ttyUSB0" FOR DEVICE AS myserial
SETSERIAL myserial SPEED B38400
GETBYTE mem FROM myserial CHUNK 5 SIZE received
CLOSE DEVICE myserial

OPTION
OPTION <BASE x> | <COMPARE x> | <SOCKET x> | <NETWORK type [ttl]> |
<MEMSTREAM x> | <MEMTYPE type> | <COLLAPSE x> | <INTERNATIONAL x> |
<STARTPOINT x> | <DEVICE x> | <PARSE x> | <FRAMEWORK x> | <VARTYPE x> |
<QUOTED x> | <DQ x> | <ESC x> | <UTF8 x> | <DELIM x> | <BREAK x> | <EXPLICIT x> |
<INPUT x> | <ERROR x> | <PROPER x> | <TLS x> | <EVAL x>
Type: statement
Sets an option to define the behavior of the compiled BaCon program. It is recommended to use this
statement in the beginning of the program, to avoid unexpected results.

• The BASE argument determines the lower bound of arrays. By default the lower bound is
set to 0. Note that this setting also has impact on the array returned by the SPLIT and
LOOKUP statements. It has no impact on arrays which assign their values statically at the
moment of declaration.

• The COMPARE argument defines if string comparisons in the IF and IIF/IIF$ statements
and in the BETWEEN operator and also in regular expressions with REPLACE$,
EXTRACT$, REGEX and WALK$ should be case sensitive (0) or not (1). The default is
case sensitive (0).

• The SOCKET argument defines the timeout for setting up a socket to an IP address. Default

value is 5 seconds.
• The NETWORK argument defines the type of protocol: TCP, UDP, BROADCAST,

MULTICAST or SCTP. When MULTICAST is selected also an optional value for TTL can
be specified. When SCTP is selected an optional value for the amount of streams can be
specified. Default setting for this option is: TCP. Default value for TTL is 1. Default amount
of SCTP streams is 1.

• The MEMSTREAM argument allows the handle created by the OPEN FOR MEMORY
statement to be used as a string variable (1). Default value is 0.

• The MEMTYPE argument defines the type of memory to be used by POKE, PEEK,
MEMORY, RESIZE, PUTBYTE, GETBYTE, COPY, ROL and ROR. Default value is
'char' (1 byte). Any valid C type can be used here, for example 'float', 'unsigned int', 'long'
etc.

• The COLLAPSE argument specifies if the results of the SPLIT and FOR..IN statements and
of the delimited string functions may contain empty results (0) in case the separator occurs
as a sequence in the target string, or not (1). Default value is 0.

• The INTERNATIONAL argument enables support for internationalization of strings. It sets
the textdomain for INTL$ and NNTL$ to the current filename. See also TEXTDOMAIN
and the chapter on creating internationalization files. The default value is 0.

• The STARTPOINT argument has impact on the way the INSTRREV function returns its
results. When set to 1, the result of the INSTRREV function is counted from the end of the
string. Default value is 0 (counting from the beginning of the string).

• The DEVICE argument determines the way a device or file is opened in the OPEN FOR
DEVICE statement. By default BaCon uses the following open mode: O_RDWR|
O_NOCTTY|O_SYNC. Other common Unix open modes are O_APPEND, O_ASYNC,
O_CREAT, O_EXCL, O_NONBLOCK and O_TRUNC. Please refer to the open manpage
for more details on the open modes.

• The PARSE argument defines if BaCon should allow non-BaCon code. It can be used to
embed foreign functions from external C libraries. Use with care, as this option accepts any
random piece of text. Errors only will popup during compile time, which may be hard to
troubleshoot. The default value is 1.

• The FRAMEWORK option is used in case of linking to MacOSX frameworks like Cocoa.
This option allows multiple frameworks separated by a comma. For example: PRAGMA
FRAMEWORK COCOA.

• The VARTYPE option defines the default variable type in case of implicit declarations. The
default value for this option is: long.

• The QUOTED argument defines whether text delimiters appearing between double quotes
should be skipped (1) or not (0). The default is to skip delimiters between double quotes (1).

• The DQ argument defines the symbol for OPTION QUOTED. This is a numeric ASCII
value between 0 and 255. Default value is 34 (double quotes).

• The ESC argument defines the escape symbol for OPTION DQ. This is a numeric ASCII
value between 0 and 255. Default value is 92 (backslash).

• The UTF8 argument enables all BaCon string functions to process text in UTF8 format
correctly. The default is to process text as ASCII (0).

• The DELIM argument defines the delimiter string when processing delimited strings. It
always should be provided as a static string literal. The default value is a single space " ".

• The BREAK argument prevents and disables the use of BREAK statements in generated C

code. The default is to allow BREAK statement (TRUE).
• The EXPLICIT argument enforces the declaration of all variables used in a program. The

default value is 0 (FALSE), so no variable declaration is enforced.
• The INPUT argument defines where the stream of input characters from STDIN should be

cut off. By default, INPUT returns when a newline is encountered. The default value is "\n".
• The ERROR argument sets whether or not a program will exit as soon a runtime error

occurs. The default is TRUE (exit upon error). If set to FALSE, the program must take care
of error handling by itself, and setting an error callback will be possible. See also the chapter
on error catching for more information.

• The PROPER argument sets whether or not the PROPER$ function should leave the items
in a delimited string intact or not. The default value is FALSE, causing the PROPER$
function to lowercase the remainder of each item.

• The TLS argument enables network connections to be TLS encapsulated. See the chapter on
secure network connections for more details. The default value is FALSE.

• The EVAL argument enables code generation for the EVAL function. It also adds linking
flags for 'libmatheval' to the generated Makefile. The default value is FALSE.

OR
x OR y
Type: operator
Performs a logical or between x and y. For the binary or, use the '|' symbol.

OS$
OS$
Type: function
Function which returns the name and machine of the current Operating System.

OUTBETWEEN$
OUTBETWEEN$(haystack$, lm$, rm$ [,flag])
Type: function
This function returns <haystack$> where the substring delimited by <lm$> on the left and <rm$>
on the right is cut out. The delimiters may contain multiple characters. They are not part of the
returned result. The <flag> is optional (default value is 0) and specifies if <rm$> should either
indicate the most right match (greedy indication, flag=1), or should return a balanced match
(flag=2). See also INSERT$ to insert a string and INBETWEEN$ to return the delimited substring.
Note that OPTION COLLAPSE has no impact on this function. Example usage:
PRINT OUTBETWEEN$("Lorem ipsum dolor sit amet", "ipsum", "sit")
a$ = OUTBETWEEN$("yes no 123 yes 456 yes", "no", "yes", TRUE)

PARSE
PARSE <string$> WITH <pattern$> [BY <delim$>] TO <array$> [SIZE <size>] [STATIC]
Type: statement

This statement can parse a delimited <string$> using a delimited <pattern$> containing wildcards.
The matched results are stored in <array$> mentioned by the TO keyword. As sometimes it cannot
be known in advance how many elements this resulting array will contain, the array may not be
declared before with LOCAL or GLOBAL. The optional BY argument determines the delimiter. If
the BY keyword is omitted then the default definition from OPTION DELIM will be used.
If PARSE is being used in a function or sub, then <array$> will have a local scope. Else <array$>
will be visible globally, and can be accessed within all functions and subs.
The total amount of elements created in this array is stored in <size>. This variable can be declared
explicitly using LOCAL or GLOBAL. The SIZE keyword is optional and may be omitted.
If <delim$> occurs in between double quotes, then it is skipped. This behavior can be changed by
setting OPTION QUOTED to FALSE. If a double quote needs to be present in the <string$>, it
must be escaped properly.
The provided <pattern$> must contain a delimited string with wildcards. The wildcard symbol '?'
will match one delimited item, and the wildcard symbol '*' matches one or more items in the
delimited string. Each time a match is found it will be added to <array$>. Parsing is executed from
left to right and stops as soon matching the pattern fails.
Example usage:
OPTION BASE 1
PARSE "a b c d e f" WITH "a ? c * f" TO array$
FOR i = 1 TO UBOUND(array$)
 PRINT array$[i]
NEXT
This example will return two array items, one containing a single element and the other containing
two delimited elements. See also MATCH to compare delimited strings using wildcards and
COLLAPSE$ to make sure items in a string are separated by one delimiter.

PEEK
PEEK(x)
Type: function
Returns a value stored at memory address x. The type of the returned value can be determined with
OPTION MEMTYPE.

PI
PI
Type: variable
Reserved variable containing the number for PI: 3.14159265358979323846.

POKE
POKE <x>, <y> [SIZE range]
Type: statement
Stores a value <y> at memory address <x>. The optional SIZE keyword can be used to store the
value <y> in a complete range of addresses starting from address <x>. Use PEEK to retrieve a
value from a memory address. Use OPTION MEMTYPE to determine the actual size of the type to

store. Examples:
OPTION MEMTYPE float
mem = MEMORY(SIZEOF(float))
POKE mem, 32.123
area = MEMORY(1024)
POKE area, 0 SIZE 1024

POW
POW(x, y)
Type: function
Raise x to the power of y.

PRAGMA
PRAGMA <OPTIONS x> | <LDFLAGS x> [TRUE] | <COMPILER x> | <INCLUDE x> | <RE
x [INCLUDE y] [LDFLAGS z]> | <GUI x>
Type: statement
Instead of passing command line arguments to influence the behavior of the compiler, it is also
possible to define these arguments programmatically. Mostly these arguments are used when
embedding variables or library dependent structures into BaCon code. When no valid option to
PRAGMA is provided, BaCon will translate to the plain compiler directive '#pragma'. Example
when SDL code is included in the BaCon program:
PRAGMA LDFLAGS SDL
PRAGMA INCLUDE SDL/SDL.h
Example when GTK2 code is included in the BaCon program:
PRAGMA LDFLAGS `pkg-config --libs gtk+-2.0`
PRAGMA INCLUDE gtk-2.0/gtk/gtk.h
PRAGMA COMPILER gcc
Example on passing optimization parameters to the compiler:
PRAGMA OPTIONS -O2 -s
Multiple arguments can be passed too:
PRAGMA LDFLAGS iup cd iupcd im
PRAGMA INCLUDE iup.h cd.h cdiup.h im.h im_image.h
The LDFLAGS argument can specify whether the flags should occur before other flags using
TRUE:
PRAGMA LDFLAGS -Wl,--no-as-needed TRUE
Example specifying a regular expression engine like PCRE (see the chapter on Regular Expressions
for more details):
PRAGMA RE pcre INCLUDE <pcreposix.h> LDFLAGS -lpcreposix
Example using an OpenMP pragma definition:
PRAGMA omp parallel for private(x)
Example specifying a GTK backend for the GUI functions:
PRAGMA GUI gtk3

PRINT
PRINT [value] | [text] | [variable] | [expression] [FORMAT <format>[TO <variable> [SIZE
<size>]]] | [,] | [;]
Type: statement
Prints a numeric value, text, variable or result from expression to standard output. As with most
BASICs, the PRINT statement may be abbreviated using the '?' symbol. A semicolon at the end of
the line prevents printing a newline. For printing to stderr, see EPRINT. Examples:
PRINT "This line does ";
PRINT "end here: ";
PRINT linenr + 2
Multiple arguments maybe used but they must be separated with a comma. Examples:
PRINT "This is operating system: ", OS$
PRINT "Sum of 1 and 2 is: ", 1 + 2
The FORMAT argument is optional and can be used to specify different types in the PRINT
argument. The syntax of FORMAT is similar to the printf argument in C. Example:
PRINT "My age is ", 42, " years which is ", 12 + 30 FORMAT "%s%d%s
%d\n"
The result also can be printed to a string variable. This has to be done in combination with
FORMAT. To achieve this, use the keyword TO. Optionally, the total amount of resulting
characters can be provided with the SIZE keyword. If no size is given, BaCon will use its default
internal buffer size (512 characters).
PRINT "Hello cruel world" FORMAT "%s" TO hello$
PRINT mytime FORMAT "Time is now: %d" TO result$ SIZE 32
t = NOW + 300
PRINT HOUR(t), MINUTE(t), SECOND(t) FORMAT "%.2ld%.2ld%.2ld" TO
time$
PRINT MONTH$(t) FORMAT "%s" TO current$ SIZE 15

PROPER$
PROPER$(string$ [,delimiter$])
Type: function
Capitalizes the first letter of all elements in a delimited string split by delimiter$. By default, other
letters are put to lowercase. This behavior can be altered by setting OPTION PROPER.
The delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is assumed.
When specified, it may consist of multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See the chapter on delimited string functions for
more information about delimited strings. Example:
PRINT PROPER$("hEllO crUEl wOrLd")

PROTO
PROTO <function name>[,function name [, ...]] [ALIAS word] [TYPE c-type]
Type: statement

Defines a foreign function so it is accepted by the BaCon parser. Multiple function names may be
mentioned, but these should be separated by a comma. Optionally, PROTO accepts an alias which
can be used instead of the original function name. Also, PROTO can define a c-type to define the
type of return value for a foreign function.
During compilation the BaCon program must explicitly be linked with an external library to resolve
the function name. See also OPTION PARSE to allow foreign functions unconditionally.
Examples:
PROTO glClear, glClearColor, glEnable
PROTO "glutSolidTeapot" ALIAS "TeaPot"
PROTO "gtk_check_version(int,int,int)" TYPE char*

PULL
PULL <x>
Type: statement
Puts a value from the internal stack into variable <x>. The argument must be a variable. The stack
will decrease to the next available value.
If the internal stack has reached its last value, subsequent PULL's will retrieve this last value. If no
value has been pushed before, a PULL will deliver 0 for numeric values and an empty string for
string values. See PUSH to push values to the stack.

PUSH
PUSH <x>|<expression>
Type: statement
Pushes a value <x> or expression to the internal stack. There is no limit to the amount of values
which can be put onto the stack other than the available memory. The principle of the stack is Last
In, First Out. The reserved variable SP provides the total amount of elements currently on the stack.
See also PULL to get a value from the stack.
' Initially create a new 0 value for stack
' This will only be 0 when stack wasn't declared before
PULL stack
PUSH stack
' Increase and push the stack 2x
' Stack has now 3 values
INCR stack
PUSH stack
PUSH "End"
PULL var$
' Print and pull current stack value - will return "end" 1 0
PRINT var$
PULL stack
PRINT stack
PULL stack
PRINT stack

PUTBYTE
PUTBYTE <memory> TO <handle> [CHUNK x] [SIZE y]
Type: statement
Store binary data from a memory area to either a file or a device identified by handle, with an
optional amount of <x> bytes, depending on OPTION MEMTYPE (default amount of bytes = 1).
Also optionally, the actual amount stored can be captured in variable <y>.
This statement is the inverse of GETBYTE, refer to this command for an example.

PUTLINE
PUTLINE "text"|<variable$> TO <handle>
Type: statement
Write a line of string data to a memory area identified by handle. The line will be terminated by a
newline character. The memory area must be set in streaming mode first using OPEN (see also the
chapter on ramdisks and memory streams). Example:
PUTLINE "hello world" TO mymemory
See also GETLINE to retrieve a line of text from a memory area.

RAD
RAD(x)
Type: function
Returns the radian value of x degrees. Example:
PRINT RAD(45)

RANDOM
RANDOM (x)
Type: function
This is a convenience function to generate a random integer number between 0 and x - 1. See also
RND for more flexibility in creating random numbers. Example creating a random number between
1 and 100:
number = RANDOM(100) + 1

READ
READ <x1[, x2, x3, ...]>
Type: statement
Reads a value from a DATA block into variable <x>. Example:
LOCAL dat[8]
FOR i = 0 TO 7
 READ dat[i]
NEXT
DATA 10, 20, 30, 40, 50, 60, 70, 80
Also, multiple variables may be provided:
READ a, b, c, d$

DATA 10, 20, 30, "BaCon"
See RESTORE to define where to start reading the data.

READLN
READLN <var> FROM <handle>
Type: statement
Reads a line of ASCII data from a file identified by <handle> into variable <var>. See the
GETBYTE statement to read binary data. Example:
READLN txt$ FROM myfile

REALPATH$
REALPATH$(filename$)
Type: function
Returns the absolute full path and name of a given filename. Symbolic links are resolved as well as
relative references like '../'. See also CURDIR$.

REAP
REAP(pid)
Type: function
After a forked process has ended, it can turn into a so-called 'zombie' process. This function can
remove such process from the process list, using the process ID as an argument. When the value -1
is used as argument, REAP will remove any zombie child process.
The return value of REAP indicates the process ID of the process which was removed from the
process list successfully. If the return value is 0, then no child process has finished yet, and no
process ID has been removed. When the return value is -1, an error has occurred (a common
mistake is providing a wrong process ID value).
This function does not pause and returns immediately. For an example, refer to FORK.

RECEIVE
RECEIVE <var> FROM <handle> [CHUNK <chunksize>] [SIZE <amount>]
Type: statement
Reads data from a network location identified by handle into a string variable or memory area.
Subsequent reads return more data until the network buffer is empty. The chunk size can be
determined with the optional CHUNK keyword. In case of TLS connections, it is recommended to
use a multitude of 16k for the chunk size.
The amount of bytes actually received can be retrieved by using the optional SIZE keyword. If the
amount of bytes received is 0, then the other side has closed the connection in an orderly fashion. In
such a situation the network connection needs to be reopened. Example:
OPEN "www.google.com:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" TO mynet
REPEAT
 RECEIVE dat$ FROM mynet

 total$ = total$ & dat$
UNTIL ISFALSE(WAIT(mynet, 500))
CLOSE NETWORK mynet

RECORD
RECORD <var>[ARRAY <x>]
 LOCAL <member1> TYPE <type>
 LOCAL <member2> TYPE <type>

END RECORD
Type: statement
Defines a record <var> with members. If the record is defined in the main program, it automatically
will be visible globally. If the record is defined within a function, the record will have a local scope,
meaning that it is only visible within that function. To declare a global record in a function, use the
DECLARE or GLOBAL keyword.
The members of a record should be defined using the LOCAL statement and can be accessed with
the 'var.member' notation. See the chapter on records for more details on the usage of records. Also
refer to WITH for assigning values to multiple members at the same time. Example:
RECORD var
 LOCAL x
 LOCAL y
END RECORD
var.x = 10
var.y = 20
PRINT var.x + var.y

REDIM
REDIM <var> TO <size>
Type: statement
Redimensions a one dimensional dynamic array to a new size. The contents of the array will be
preserved. If the array becomes smaller then the elements at the end of the array will be cleared.
The dynamic array has to be declared previously using DECLARE or LOCAL. Example:
REDIM a$ TO 20

REGEX
REGEX (txt$, expr$)
Type: function
Applies a POSIX Extended Regular Expression expr$ to the string txt$. If the expression matches,
the position of the first match is returned. If not, this function returns '0'. The length of the last
match is returned in the reserved variable REGLEN.
Use OPTION COMPARE to set case sensitive matching. Note that this function does not support
non-greedy matching. See the chapter on regular expressions to specify different regular expression
engines for more flexibility. Examples:

http://linux.die.net/man/7/regex

' Does the string match alfanum character
PRINT REGEX("Hello world", "[[:alnum:]]")
' Does the string *not* match a number
PRINT REGEX("Hello world", "[^0-9]")
' Does the string contain an a, l or z
PRINT REGEX("Hello world", "a|l|z")

REGLEN
REGLEN
Type: variable
Reserved variable containing the length of the last REGEX match.

RELATE
RELATE <assocA> TO <assocB>[, assocC, ...]
Type: statement
This statement creates a relation between associative arrays. Effectively this will result into
duplication of settings; an index in array <assocA> also will be set in array <assocB>. A previous
declaration of the associative arrays involved is required. Example:
DECLARE human, mortal ASSOC int
RELATE human TO mortal
human("socrates") = TRUE
PRINT mortal("socrates")

REM
REM [remark]
Type: statement
Adds a comment to your code. Any type of string may follow the REM statement. Instead of REM
also the single quote symbol ' maybe used to insert comments in the code.
BaCon also accepts C-style block comments: this can be done by surrounding multiple lines
using /* and */.

RENAME
RENAME <filename> TO <new filename>
Type: statement
Renames a file. If different paths are included the file is moved from one path to the other. Note
that an error occurs when the target directory is on a different partition. Example:
RENAME "tmp.txt" TO "real.txt"

REPEAT
REPEAT
 <body>

 [BREAK]|[CONTINUE]
UNTIL <equation>
Type: statement
The REPEAT/UNTIL construction repeats a body of statements. The difference with
WHILE/WEND is that the body will be executed at least once. The optional BREAK statement can
be used to break out the loop. With CONTINUE part of the body can be skipped. The BETWEEN
operator is allowed in the equation. Example:
REPEAT
 C = GETKEY
UNTIL C = 27

REPLACE$
REPLACE$(haystack$, needle$, replacement$ [, flag])
Type: function
Substitutes a substring <needle$> in <haystack$> with <replacement$> and returns the result. The
replacement does not necessarily need to be of the same size as the substring. With the optional flag
set to 1 the <needle$> should be taken as a regular expression, and OPTION COMPARE impacts
case insensitive matching. With the optional flag set to 2, REPLACE$ will behave as a translate,
meaning that the characters in <needle$> will be replaced by the successive characters in
<replacement$>. See also EXTRACT$.
Examples:
PRINT REPLACE$("Hello world", "l", "p")
PRINT REPLACE$("Some text", "me", "123")
PRINT REPLACE$("Goodbye <all>", "<.*>", "123", TRUE)
PRINT REPLACE$("abc123def", "[[:digit:]]", "x", 1)
PRINT REPLACE$("Hello world", "old", "pme", 2)

RESIZE
RESIZE <x> TO <y>
Type: statement
Resizes memory area starting at address <x> to an amount of <y> of the type determined by
OPTION MEMTYPE. If the area is enlarged, the original contents of the area remain intact.

RESTORE
RESTORE [label]
Type: statement
Restores the internal DATA pointer(s) to the beginning of the first DATA statement.
Optionally, the restore statement allows a LABEL from where the internal DATA pointer needs to
be restored. See also READ. Example:
DATA 1, 2, 3, 4, 5
LABEL txt
DATA "Hello", "world", "this", "is", "BaCon"
RESTORE txt

READ dat$

RESUME
RESUME
Type: function
When an error is caught, this statement tries to continue after the statement where an error occurred.
Example:
TRAP LOCAL
CATCH GOTO print_err
DELETE FILE "somefile.txt"
PRINT "Resumed..."
END
LABEL print_err
 PRINT ERR$(ERROR)
 RESUME

RETURN
RETURN [value]
Type: statement
If RETURN has no argument it will return to the last invoked GOSUB. If no GOSUB was invoked
previously then RETURN has no effect.
Only in case of functions the RETURN statement must contain a value. This is the value which is
returned when the FUNCTION is finished.

RETVAL
RETVAL
Type: variable
Reserved variable containing the return status of the operating system commands executed by
SYSTEM or EXEC$.

REV$
REV$(string$ [,delimiter$])
Type: function
Puts all elements in a delimited string split by delimiter$ in reverse order. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it
may consist of multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Example:
PRINT "Reverted members: ", REV$("Rome Amsterdam Kiev Bern Paris
London")

REVERSE$
REVERSE$(x$)
Type: function
Returns the reverse of x$.

REWIND
REWIND <handle>
Type: statement
Returns to the beginning of a file opened with <handle>.

RIGHT$
RIGHT$(string$[, amount])
Type: function
Returns <amount> characters from the right of <string$>. The <amount> argument is optional. If
omitted, then RIGHT$ by default will return 1 character. See also LEFT$ and MID$.

RIP$
RIP$(x$, y, [z])
Type: function
This function is the complement of MID$. It returns the characters which are left after position <y>
in <x$> with optional length <z> is omitted. If y is a negative number, then start counting the
position from the end of x$. The parameter 'z' is optional. When this parameter is 0, negative or left
out, then everything from position 'y' until the end of the string is omitted. Example:
txt$ = "Hello cruel world"
PRINT RIP$(txt$, 7, 5)
PRINT RIP$(txt$, -11)
PRINT RIP$(txt$, 12, -1)

RND
RND
Type: function
Returns a random number between 0 and the reserved variable MAXRANDOM. The generation of
random numbers can be seeded with the statement SEED. See also the function RANDOM for a
more convenient way of generating random numbers. Example:
SEED NOW
x = RND

ROL
ROL(nr)
Type: function
This function performs a binary shift to the left. The highest bit will be recycled into bit 0. The total

amount of bits in a value is determined by the MEMTYPE option.
OPTION MEMTYPE short
PRINT ROL(32768)

ROR
ROR(nr)
Type: function
This function performs a binary shift to the right. The lowest bit will be recycled into the highest,
depending on the setting of the MEMTYPE option.
OPTION MEMTYPE int
PRINT ROR(1)

ROTATE$
ROTATE$(string$, step [,delimiter$])
Type: function
Rotates all elements in a delimited string split by delimiter$ <step> positions forward. In case the
<step> parameter is a negative number, the rotation will be backwards. The delimiter$ is optional.
If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it may
consist of multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Example:
PRINT ROTATE$("Rome Amsterdam Kiev Bern Paris London", 2)

ROUND
ROUND(x)
Type: function
Rounds x to the nearest integer number. For compatibility reasons, the keyword INT may be used
instead. Note that this function always returns an integer value.
See also FLOOR to round down to the nearest the integer and MOD to get the fraction from a
fractional number.

ROWS
ROWS
Type: function
Returns the amount of rows in the current ANSI compliant terminal. Use COLUMNS to get the
amount of columns.

RUN
RUN <command$>
Type: statement

Executes an operating system command thereby transferring control. This effectively means that
the current program is left permanently, the process ID is preserved and that this statement does not
return to the BaCon program. Typically, the RUN statement is used at the end of a BaCon program.
It can only execute one system command at a time.
The behavior of RUN differs from the SYSTEM statement, which can execute a set of compound
commands in a shell and can query the exit status. See also EXEC$ and RUN$.
Example:
RUN "ls -l"

RUN$
RUN$(command$ [, stdin$[, out]])
Type: function
Executes an operating system command in a coprocess and returns the resulting output to the
BaCon program. Because the coprocess PID is not a shell, but the PID of the executed command
itself, this function cannot return a system command exit status, and can only execute one system
command at a time. Optionally, a second argument may be used to feed to STDIN. Also optionally,
a third argument can be specified to determine whether all output needs to be captured (0 = default),
only stdout (1) or only stderr (2). See RUN and SYSTEM to plainly execute a system command.
Example:
result$ = RUN$("ps x")
PRINT RUN$("rev", "This is a string", 1)
PRINT RUN$("ls -z", NULL, 2)

SAVE
SAVE string$ TO filename$
Type: statement
Saves a string to disk in one step. If the file already exists it is overwritten. See BSAVE for saving
binary files in one step, and OPEN/WRITELN/READLN/CLOSE to read and write to a file using a
filehandle. Example:
SAVE result$ TO "/tmp/data.txt"
SAVE "Hello", "world" TO file$

SCREEN
SCREEN <SAVE> | <RESTORE>
Type: statement
This statement can save the state of the current ASCII screen into memory so it can be restored at a
later moment in time. It only works with ANSI compliant terminals. Example:
SCREEN SAVE
PRINT "Hello world"
SCREEN RESTORE

SCROLL
SCROLL <UP [x]|DOWN [x]>

Type: statement
Scrolls the current ANSI compliant terminal up or down one line. Optionally, the amount of lines to
scroll can be provided.

SEARCH
SEARCH(handle, string [,flag])
Type: function
Searches for <string> in file opened with <handle>. The search returns the byte offset in the file
where the first occurrence of <string> is located. Use SEEK to effectively put the filepointer at this
position. If the string data is not found, then the value '-1' is returned.
Optionally, a third argument can be used to determine where to start the search and in which
direction the search should take place. The following values are accepted:
0: start at the beginning of the file, search forward (default)
1: start at the current position of the filepointer, search forward
2: start at the current position of the filepointer, search backward
3: start at the end of the file, search backward.
Note that when searching backwards, the actual search begins at the start position minus the length
of the searched string.

SECOND
SECOND(x)
Type: function
Returns the second (0-59) where x is the amount of seconds since January 1, 1970.

SEED
SEED x
Type: statement
Seeds the random number generator with some value. After that, subsequent usages of RND and
RANDOM will return numbers in a random order. Note that seeding the random number generator
with the same number also will result in the same sequence of random numbers.
By default, a BaCon program will automatically seed the random number generator as soon as it is
executed, so it may not be needed to use this function explicitly. Example:
SEED NOW

SEEK
SEEK <handle> OFFSET <offset> [WHENCE START|CURRENT|END]
Type: statement
Puts the filepointer to new position at <offset>, optionally starting from <whence>.

SELECT
SELECT <variable> CASE <body>[;] [DEFAULT <body>] END SELECT

Type: statement
With this statement a variable can be examined on multiple values. Optionally, if none of the values
match the SELECT statement may fall back to the DEFAULT clause. Example:
SELECT myvar
 CASE 1
 PRINT "Value is 1"
 CASE 5
 PRINT "Value is 5"
 CASE 2*3
 PRINT "Value is ", 2*3
 DEFAULT
 PRINT "Value not found"
END SELECT
Contrary to most implementations, in BaCon the CASE keyword also may refer to expressions and
variables. Note that in such situation, each CASE keyword will re-evaluate the expression at each
occurrence.
Also, BaCon knows how to 'fall through' by either using a semicolon or a comma separated list, in
case multiple values lead to the same result:
SELECT human$
 CASE "Man"
 PRINT "It's male"
 CASE "Woman", "Girl"
 PRINT "It's female"
 CASE "Child";
 CASE "Animal"
 PRINT "It's an it"
 DEFAULT
 PRINT "Alien detected"
END SELECT

SEND
SEND <var> TO <handle> [CHUNK <chunk>] [SIZE <size>]
Type: statement
Sends data in <var> to a network location identified by <handle>. Optionally, the amount of bytes
to send can be specified with the CHUNK keyword. As by default SEND will consider the <var> to
be a string, the default amount of data is the string length of <var>. However, instead of a string,
also binary data can be sent by using a memory area created by the MEMORY function. In such a
situation it is obligatory to also specify the chunk size.
The amount of bytes actually sent can be retrieved by using the optional SIZE keyword. For an
example of SEND, see the RECEIVE statement.

SETENVIRON
SETENVIRON var$, value$
Type: statement

Sets the environment variable 'var$' to 'value$'. If the environment variable already exists, this
statement will overwrite a previous value. See GETENVIRON$ to retrieve the value of an
environment variable. Example:
SETENVIRON "LANG", "C"

SETSERIAL
SETSERIAL <device> IMODE|OMODE|CMODE|LMODE|SPEED|OTHER <value>
Type: statement
This statement can set the properties of a serial device. The Input Mode (IMODE), Output Mode
(OMODE), Control Mode (CMODE) and Local Mode (LMODE) can be set, as well as the speed
and the special properties on the serial device. A discussion on the details of all these options is
outside the scope of this manual. Please refer to the TermIOS documentation of your C compiler
instead.
Example usage opening a serial port in 8N1, ignoring 0-byte as a break, canonical, and non-
blocking with a timeout of 0.5 seconds:
OPEN "/dev/ttyUSB0" FOR DEVICE AS myserial
SETSERIAL myserial SPEED B9600
SETSERIAL myserial IMODE ~IGNBRK
SETSERIAL myserial CMODE ~CSIZE
SETSERIAL myserial CMODE CS8
SETSERIAL myserial CMODE ~PARENB
SETSERIAL myserial CMODE ~CSTOPB
SETSERIAL myserial LMODE ICANON
SETSERIAL myserial OTHER VMIN = 0
SETSERIAL myserial OTHER VTIME = 5
Example setting the terminal to raw input mode (no echo and no line based input):
SETSERIAL STDIN_FILENO LMODE ~ECHO
SETSERIAL STDIN_FILENO LMODE ~ICANON

SGN
SGN(x)
Type: function
Returns the sign of x. If x is a negative value, this function returns -1. If x is a positive value, this
function returns 1. If x is 0 then a 0 is returned.

SIGNAL
SIGNAL <sub>, <signal>
Type: statement
This statement connects a Unix signal to a callback function. Plain POSIX signal names can be
used, for example SIGINT, SIGTERM, SIGCHLD and so on. Next to that, this statement accepts
the SIG_DFL (default action) and SIG_IGN (ignore signal) symbols for a callback also.
Example to ignore the SIGCHLD signal, preventing zombie processes to occur:
SIGNAL SIG_IGN, SIGCHLD

Example connecting the <CTRL>+<C> signal to a SUB:
SUB Cleanup : ' Signal callback function
 SIGNAL SIG_DFL, SIGINT : ' Restore CTRL+C
 PRINT "Cleaning up" : ' Do your cleanup here
 STOP SIGINT : ' Send the SIGINT to myself
ENDSUB
SIGNAL Cleanup, SIGINT : ' Catch CTRL+C
PRINT "Waiting..."
key = GETKEY

SIN
SIN(x)
Type: function
Returns the calculated SINUS of x, where x is a value in radians.

SIZEOF
SIZEOF(type)
Type: function
Returns the bytesize of a C type.

SLEEP
SLEEP <x>
Type: statement
Sleeps <x> milliseconds (sleep 1000 is 1 second).

SORT
SORT <x> [SIZE <x>] [DOWN]
Type: statement
Sorts the one-dimensional array <x> in ascending order. Only the basename of the array should be
mentioned, not the dimension. The array may be indexed or associative.
For indexed arrays, the amount of elements to sort can be specified with the optional keyword
SIZE. Also optionally, the keyword DOWN can be used to sort in descending order.
For associative arrays, sorting means changing the insertion order of the key/value pairs in the hash
table. The ordered keys can be retrieved by LOOKUP or OBTAIN$. The SIZE keyword has no
impact.
Examples:
GLOBAL a$[5] TYPE STRING
a$[0] = "Hello"
a$[1] = "my"
a$[2] = "good"
a$[4] = "friend"
SORT a$

Sorting an associative array:
DECLARE aa ASSOC short
aa("one") = 33
aa("two") = 12
aa("three") = 44
aa("four") = 15
aa("five") = 8
SORT aa DOWN

SORT$
SORT$(string$ [,delimiter$])
Type: function
Sorts all elements in a delimited string split by delimiter$. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of
multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Example:
PRINT "Sorted members: ", SORT$("f,q,a,c,i,b,r,t,e,d,z,", ",")

SOURCE$
SOURCE$
Type: variable
Reserved variable which contains the BaCon source code of the current running program. Note that
for commercial programs this variable should not be used, because it stores the source code as plain
text in the resulting binary.

SP
SP
Type: variable
Reserved variable containing the amount of elements currently in the stack. See also PUSH and
PULL.

SPC$
SPC$(x)
Type: function
Returns an x amount of spaces.

SPLIT
SPLIT <string$> [BY <substr$>|<nr>] TO <array$> [SIZE <variable>] [STATIC]
Type: statement

This statement can split a string into smaller pieces. The optional BY argument determines where
the string is being split. If the BY keyword is omitted then the definition from OPTION DELIM is
used to split string$. The results are stored in the argument <array$> mentioned by the TO
keyword. As sometimes it cannot be known in advance how many elements this resulting array will
contain, the array may not be declared before with LOCAL or GLOBAL.
If <substr$> occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See the chapter on delimited string functions for
more information about delimited strings.
If SPLIT is being used in a function or sub, then <array$> will have a local scope. Else <array$>
will be visible globally, and can be accessed within all functions and subs.
The total amount of elements created in this array is stored in <variable>. This variable can be
declared explicitly using LOCAL or GLOBAL. The SIZE keyword is optional and may be omitted.
If the <substr$> delimiter occurs in between double quotes, then it is skipped. This behavior can be
changed by setting OPTION QUOTED to FALSE. If a double quote needs to be present in the
<string$>, it must be escaped properly.
If the value for BY is numeric, then string$ will be cut in pieces each containing <nr> characters. If
<nr> is 0 then there are no results. If <nr> is equal to or bigger than the length of the string, then the
original string will be returned as an array with one element.
Example usage:
OPTION BASE 1
LOCAL dimension
SPLIT "one,two,,three" BY "," TO array$ SIZE dimension
FOR i = 1 TO dimension
 PRINT array$[i]
NEXT
The above example will return four elements, of which the third element is empty. If OPTION
COLLAPSE is put to 1, the above example will return three elements, ignoring empty entries.
SPLIT "one,two,\"three,four\",five" BY "," TO array$ SIZE dim
This will return 4 elements, because one separator (the comma) lies in between double quotes.
The optional STATIC keyword allows the created <array> to be returned from a function. See also
EXPLODE$ to split text returning a delimited string, TOKEN$ to retrieve one single element from
a delimited string, and JOIN to join array elements into a string.

SQR
SQR(x)
Type: function
Calculates the square root from a number.

STOP
STOP [signal]
Type: statement
Halts the current program and returns to the Unix prompt. The program can be resumed by
performing the Unix command 'fg', or by sending the CONT signal to its pid: kill -CONT <pid>.
The STOP statement actually sends the 'STOP' signal to the current program. Optionally, a different

signal can be defined. The signal can be a number or a predefined name from libc, like SIGQUIT,
SIGKILL, SIGTERM and so on. Example sending the <CTRL>+<C> signal:
STOP SIGINT

STR$
STR$(x)
Type: function
Convert numeric value x to a string (opposite of VAL). Example:
PRINT STR$(123)

SUB
SUB <name>[(STRING s, NUMBER i, FLOATING f, VAR v SIZE t)]
 <body>
ENDSUB | END SUB
Type: statement
Defines a subprocedure. A subprocedure never returns a value (use FUNCTION instead).
Variables used in a sub are visible globally, unless declared with LOCAL. The incoming arguments
are always local. Instead of the BaCon types STRING, NUMBER and FLOATING for the
incoming arguments, also regular C-types also can be used. If no type is specified, then BaCon will
recognize the argument type from the variable suffix. In case no suffix is available, plain NUMBER
type is assumed. With VAR a variable amount of arguments can be defined. Example:
SUB add(NUMBER x, NUMBER y)
 LOCAL result
 PRINT "The sum of x and y is: ";
 result = x + y
 PRINT result
END SUB

SUM / SUMF
SUM(array, amount [,minimum])
SUMF(array, amount [,minimum])
Type: function
Returns the sum of <amount> elements in <array>. Optionally, a check can be added which
specifies the minimum value for each element to be added. If an array element falls below the
specified value then it is excluded from the sum calculation.
The SUM and SUMF functions perform the same task, but SUM requires an array with integers and
SUMF an array with floating values. See also MAP. Example:
PRINT SUM(ages, 10)
PRINT SUMF(temperatures, 100, 25.5)

SWAP
SWAP x, y

Type: statement
Swaps the contents of the variables x and y. The types of the variables can be mixed. Note that
when swapping an integer with a float precision may be lost.
Numeric variables can be swapped with string variables, thereby effectively converting types.
Example:
SWAP x%, y#
SWAP number, string$

SYSTEM
SYSTEM <command$>
Type: statement
Executes an operating system command. It causes the BaCon program to hold until the command
has been completed. The exit status of the executed command itself is stored in the reserved
variable RETVAL. Use EXEC$ to catch the result of an operating system command. Example:
SYSTEM "ls -l"

TAB$
TAB$(x)
Type: function
Returns an x amount of tabs.

TAIL$
TAIL$(string$, amount [, delimiter$])
Type: function
Retrieves the last <amount> elements from a delimited string$ split by delimiter$. The delimiter$ is
optional. If it is omitted, then the definition from OPTION DELIM is assumed. When specified, it
may consist of multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE.
See also FIRST$ to obtain the remaining elements from the delimited string, and HEAD$ to obtain
elements counting from the start. Refer to the chapter on delimited string functions for more
information about delimited strings. Example:
PRINT "Last 2 members: ", TAIL$("Rome Amsterdam Kiev Bern Paris
London", 2)

TALLY
TALLY(haystack$, needle$ [,z])
Type: function
Returns the amount of times needle$ occurs in haystack$, optionally starting at position z. If the
needle$ is not found, then this function returns the value '0'. See INSTR to find the position of a
string. Example:
amount = TALLY("Hello world are we all happy?", "ll")

PRINT TALLY("Don't take my ticket", "t", 10)

TAN
TAN(x)
Type: function
Returns the calculated tangent of x, where x is a value in radians.

TELL
TELL(handle)
Type: function
Returns current position in file opened with <handle>.

TEXTDOMAIN
TEXTDOMAIN <domain$>, <directory$>
Type: statement
When OPTION INTERNATIONAL is enabled, BaCon by default configures a textdomain with the
current filename and a base directory "/usr/share/locale" for the message catalogs. With this
statement it is possible to explicitly specify a different textdomain and base directory.

TIMER
TIMER
Type: function
Keeps track of the amount of milliseconds the current program is running. Example:
iter = 1
WHILE iter > 0 DO
 IF TIMER = 1 THEN BREAK
 INCR iter
WEND
PRINT "Got ", iter-1, " iterations in 1 millisecond!"

TIMEVALUE
TIMEVALUE(a,b,c,d,e,f)
Type: function
Returns the amount of seconds since January 1 1970, from year (a), month (b), day (c), hour (d),
minute (e), and seconds (f). Example:
PRINT TIMEVALUE(2009, 11, 29, 12, 0, 0)

TOASCII$
TOASCII$(string$)
Type: function

Returns the same string of which each byte has bit 7 set to 0. Note that this can lead to
unpredictable results. See also ISASCII or ISUTF8. Example:
PRINT TOASCII$("Hello world")

TOKEN$
TOKEN$(haystack$, n [, delimiter$])
Type: function
Returns the nth token in haystack$ split by delimiter$. The delimiter$ is optional. If it is omitted,
then the definition from OPTION DELIM is assumed. When specified, it may consist of multiple
characters.
If delimiter$ occurs between double quotes in haystack$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE.
If the indicated position is outside a valid range, the result will be an empty string. Use the
FLATTEN$ function to flatten out the returned token. See also ISTOKEN, AMOUNT and SPLIT.
Examples:
PRINT TOKEN$("a b c d \"e f\" g h i j", 6)
PRINT TOKEN$("Dog Cat @@@ Mouse Bird@@@ 123@@@", 3, "@@@")
PRINT TOKEN$("1,2,3,4,5", 3, ",")
PRINT TOKEN$("1,2," & CHR$(34) & "3,4" & CHR$(34) & ",5,", 6, ",")

TRACE
TRACE <ON|MONITOR <var1, var2, ...>|OFF>
Type: statement
The ON keyword starts trace mode. The program will wait for a key to continue. After each key
press, the next line of source code is displayed on the screen, and then executed. A double quote
symbol will be replaced for a single quote, a back slash symbol will be replaced by a forward slash
and a percentage symbol will be replaced by a hash symbol to avoid clashes with the C printf
function. Pressing the ESCAPE key will exit the program.
The MONITOR keyword also starts trace mode, but allows monitoring values of variables. After
each line of source code the content of the specified variables is displayed.
If TRACE is used within a function, make sure to also add TRACE OFF at the end of the function.
Example:
LOCAL var
TRACE MONITOR var
FOR var = 1 TO 10
 INCR var
NEXT

TRAP
TRAP <LOCAL|SYSTEM>
Type: statement
Sets the runtime error trapping. By default, BaCon performs error trapping (LOCAL). BaCon tries
to examine statements and functions where possible, and will display an error message based on the

operating system internals, indicating which statement or function causes a problem. Optionally,
when a CATCH is set, BaCon can jump to a LABEL instead, where a self-defined error function
can be executed, and from where a RESUME is possible.
When set to SYSTEM, error trapping is performed by the operating system. This means that if an
error occurs, a signal will be caught by the program and a generic error message is displayed on the
prompt. The program will then exit gracefully
The setting LOCAL decreases the performance of the program, because additional runtime checks
are carried out when the program is executed.

TREE
TREE <binary tree> NODE <value> [TYPE <type>]
Type: statement
The TREE statement adds a node to a binary tree. For more information and examples, see the
chapter on binary trees. See also FIND to verify the presence of a node in a binary tree.

TRUE
TRUE
Type: variable
Represents and returns the value of '1'. This is the opposite of the FALSE variable.

TYPE
TYPE [SET|UNSET|RESET] [BOLD|ITALIC|UNDERLINE|INVERSE|BLINK|STRIKE]
Type: statement
The TYPE statement sets the font type in an ANSI compliant console. It is allowed to specify
multiple types on the same line. Changes can be undone per type using the UNSET keyword. The
RESET keyword will restore the default font settings. Note that not all Linux shells implement
every console font type. See also the COLOR statement to set the color. Examples:
TYPE SET ITALIC BLINK
PRINT "This is blinking italic!"
TYPE UNSET BLINK
PRINT "Italic left!"
TYPE RESET

TYPEOF$
TYPEOF$(x)
Type: function
Returns the type of a variable.

UBOUND
UBOUND(array)
Type: function

Returns the total elements available in a static, dynamic or associative array. In case of multi-
dimensional static arrays, the total amount of elements in the array is returned. Example:
LOCAL array[] = { 2, 4, 6, 8, 10 }
PRINT UBOUND(array)

UCASE$
UCASE$(x$)
Type: function
Converts x$ to uppercase characters and returns the result. See LCASE$ to do the opposite.

UCS
UCS(char)
Type: function
Calculates the Unicode value of the given UTF8 character (opposite of UTF8$). See also ASC for
plain ASCII characters. Example:
PRINT UCS("©")

ULEN
ULEN(x$ [, y])
Type: function
Returns the length of the UTF8 string x$. Optionally, the position at y can be specified. See LEN
for plain ASCII strings.

UNESCAPE$
UNESCAPE$(string$)
Type: function
Parses the text in <string$> and converts escape sequences into actual special characters (like
newline or Unicode). This functionality comes handy when reading C text or JSON text containing
escape sequences. Escape sequences for actual binary data (like '\x') are not converted. See also
ESCAPE$ to do the opposite. Example:
OPTION UTF8 TRUE
PRINT UNESCAPE$("Hello\\nworld\\t\\U0001F600")

UNFLATTEN$
UNFLATTEN$(txt$ [, groupingchar$])
Type: function
Unflattens a string where the double quote symbol is used to group parts of the string together. The
string will be surrounded with double quotes and any existing escapes will be escaped. Instead of
the double quote symbol a different character can be specified (optional). See also FLATTEN$ for
the reverse operation. Examples:
PRINT UNFLATTEN$("\"Hello \\\"cruel\\\" world\"")

PRINT UNFLATTEN$("\'Hello world\'", "'")

UNIQ$
UNIQ$(string$ [,delimiter$])
Type: function
Unifies all elements in a delimited string split by delimiter$. The delimiter$ is optional. If it is
omitted, then the definition from OPTION DELIM is assumed. When specified, it may consist of
multiple characters.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings. Example:
PRINT "A sequence with unique members: ", UNIQ$("a a b c c d e f a
c f")

USEC
USEC
 <body>
ENDUSEC | END USEC
Type: statement
Defines a body with C code. This code is put unmodified into the generated C source file. Example:
USEC
 char *str;
 str = strdup("Hello");
 printf("%s\n", str);
END USEC

USEH
USEH
 <body>
ENDUSEH | END USEH
Type: statement
Defines a body with C declarations and/or definitions. This code is put unmodified into the
generated global header source file. This can particularly be useful in case of using variables from
external libraries. See also USEC to pass C source code. Example:
USEH
 char *str;
 extern int pbl_errno;
END USEH

UTF8$
UTF8$(x)
Type: function

Returns the character belonging to Unicode number x. This function does the opposite of UCS. The
value for x can lie between 0 and 0x10FFFF. Note that the result only will be visible in a valid
UTF8 environment, and also that the installed character set should support the character. See also
CHR$ for plain ASCII characters. The following should print a smiley emoticon:
LET a$ = UTF8$(0x1F600)
PRINT a$

VAL
VAL(x$)
Type: function
Returns the actual value of x$. This is the opposite of STR$. Example:
nr$ = "456"
q = VAL(nr$)

VAR
VAR <array$>|<array#>|<array%>|<array> [TYPE c-type] SIZE <total>
Type: statement
Declares a variable argument list in a FUNCTION or SUB. There may be no other variable
declarations in the function header. The arguments to the function are put into an <array> which is
visible within the FUNCTION or SUB. The type can be defined either by the optional TYPE
keyword or by a variable suffix. If no type is specified then VAR will assume NUMBER. The SIZE
keyword defines where the resulting amount of elements will be stored. Example:
OPTION BASE 1
SUB demo (VAR arg$ SIZE amount)
 LOCAL x
 PRINT "Amount of incoming arguments: ", amount
 FOR x = 1 TO amount
 PRINT arg$[x]
 NEXT
END SUB

' No argument
demo(0)
' One argument
demo("abc")
' Three arguments
demo("123", "456", "789")

VERIFY
VERIFY(connection, file$)
Type: function
Verifies the certificates of the current TLS connection against file$. The file$ should be in PEM
format and should contain all root CA certificates. Usually this information can be extracted from a

web browser. See also the chapter on secure network connections.
In case of an invalid certificate, OpenSSL and GnuTLS will not drop the active TLS connection,
and the VERIFY function will return the TLS error code.
For WolfSSL, the connection will be dropped immediately, and the reserved ERROR variable will
contain the actual TLS error code. Use CATCH GOTO to prevent the program from stopping and
workaround the TLS problem.

VERSION$
VERSION$
Type: variable
Reserved variable which contains the BaCon version text.

WAIT
WAIT(handle, milliseconds)
Type: function
Suspends the program for a maximum of <milliseconds> until data becomes available on <handle>.
This is especially useful in network programs where a RECEIVE will block if there is no data
available. The WAIT function checks the handle and if there is data in the queue, it returns with
value '1'. If there is no data then it waits for at most <milliseconds> before it returns. If there is no
data available, WAIT returns '0'. Refer to the RECEIVE statement for an example.
This statement also can be used to find out if a key is pressed without actually waiting for a key, so
without interrupting the current program. In this case, use the STDIN file descriptor (0) as the
handle. Example:
REPEAT
 PRINT "Press Escape... waiting..."
 key = WAIT(STDIN_FILENO, 50)
UNTIL key = 27
As can be observed in this code, instead of '0' the reserved POSIX variable STDIN_FILENO can be
used also. See also appendix B for more standard POSIX variables.

WALK$
WALK$(directory$, filetype, regex, recursive [,delimiter$])
Type: function
This function returns a delimited string with all the file names located in <directory$>. The
<filetype> argument can contain a number and determines the kind of file to look for. These values
can be combined in a binary OR:

Value Meaning

1 Regular file

2 Directory

4 Character device

8 Block device

16 Named pipe (FIFO)

32 Symbolic link

64 Socket

The <regex> argument defines a regular expression and acts as an additional filter to narrow down
the resulting list further. The <recursive> argument can either be TRUE or FALSE to define
whether or not underlying directories should be searched as well.
The delimiter$ argument is optional. If it is omitted, then the definition from OPTION DELIM is
assumed. When specified, it may consist of multiple characters. Note that the default delimiter used
by BaCon is a single whitespace, while file names can contain whitespaces as well. It is therefore
recommended to specify a delimiter like NL$ which usually does not occur in file names.
If delimiter$ occurs between double quotes in string$, then it is ignored. This behavior can be
changed by setting OPTION QUOTED to FALSE. See also the chapter on delimited string
functions for more information about delimited strings.
Example to list files and directories in the current directory using a binary OR:
PRINT WALK$(".", 1|2, ".+", FALSE, NL$)
Example to list all directories in /tmp containing an underscore symbol:
PRINT WALK$("/tmp", 2, "[_]+", FALSE, NL$)
Example to recursively list all files ending in ".jpg" and also start with a number:
PRINT WALK$(".", 1, "^[[:digit:]]+.*.jpg$", TRUE, NL$)

WEEK
WEEK(x)
Type: function
Returns the week number (1-53) in a year, where x is the amount of seconds since January 1, 1970.
Example:
PRINT WEEK(NOW)

WEEKDAY$
WEEKDAY$(x)
Type: function
Returns the day of the week as a string in the system's locale ("Monday", "Tuesday", etc), where x
is the amount of seconds since January 1, 1970.

WHERE
WHERE(string$, position [,delimiter$])
Type: function
Returns the actual numerical character position in a delimited string split by delimiter$. The
delimiter$ is optional. If it is omitted, then the definition from OPTION DELIM is assumed. When
specified, it may consist of multiple characters. If delimiter$ occurs between double quotes in

string$ then it is ignored. Example:
PRINT WHERE("a b c d \"e f\" g h i j", 6)

WHILE
WHILE <equation> [DO]
 <body>
 [BREAK]|[CONTINUE]
WEND
Type: statement
The WHILE/WEND is used to repeat a body of statements and functions. The DO keyword is
optional. The optional BREAK statement can be used to break out the loop. With the optional
CONTINUE part of the body can be skipped. Example:
LET a = 5
WHILE a > 0 DO
 PRINT a
 a = a - 1
WEND
As the WHILE statement uses an equation to evaluate, it also allows the BETWEEN operator:
a = 2
WHILE a BETWEEN 1;10
 PRINT a
 INCR a
WEND

WITH
WITH <var>
 .<var> = <value>
 .<var> = <value>

END WITH
Type: statement
Assign values to individual members of a RECORD. For example:
WITH myrecord
 .name$ = "Peter"
 .age = 41
 .street = Falkwood Area 1
 .city = The Hague
END WITH

WRITELN
WRITELN "text"|<var> TO <handle>
Type: statement
Write a line of ASCII data to a file identified by handle. A semicolon at the end of the line prevents

writing a newline. Refer to the PUTBYTE statement to write binary data. Examples:
WRITELN "Hello world with a newline" TO myfile
WRITELN "Without newline"; TO myfile

YEAR
YEAR(x)
Type: function
Returns the year where x is amount of seconds since January 1, 1970. Example:
PRINT YEAR(NOW)

Appendix A: Runtime error codes

Code Meaning

0 Success

1 Trying to access illegal memory

2 Error opening file

3 Could not open library

4 Symbol not found in library

5 Wrong value

6 Unable to claim memory

7 Unable to delete file

8 Could not open directory

9 Unable to rename file

10 NETWORK argument should contain colon with port number

11 Could not resolve hostname

12 Socket error

13 Unable to open address

14 Error reading from socket

15 Error sending to socket

16 Error checking socket

17 Unable to bind the specified socket address

18 Unable to listen to socket address

19 Cannot accept incoming connection

20 Unable to remove directory

21 Unable to create directory

22 Unable to change to directory

23 GETENVIRON argument does not exist as environment variable

24 Unable to stat file

25 Search contains illegal string

26 Cannot return OS name

27 Illegal regex expression

28 Unable to create bidirectional pipes

29 Unable to fork process

30 Cannot read from pipe

31 Gosub nesting too deep

32 Could not open device

33 Error configuring serial port

34 Error accessing device

35 Error in INPUT

36 Illegal value in SORT dimension

37 Illegal option for SEARCH

38 Invalid UTF8 string

39 Illegal EVAL expression

40 SSL file descriptor error

41 Error loading certificate

42 Widget not found

43 Unsupported array type

Appendix B: standard POSIX variables

Variable Value

EXIT_SUCCESS 0

EXIT_FAILURE 1

STDIN_FILENO 0

STDOUT_FILENO 1

STDERR_FILENO 2

RAND_MAX System dependent

Appendix C: reserved keywords and functions
All keywords belonging to the C language cannot be redefined in a BaCon program:

auto, break, case, char, const, continue, default, do, double, else, enum, extern, float, for, goto, if,
int, long, register, return, short, signed, sizeof, static, struct, switch, typedef, union, unsigned, void,
volatile, while.
Functions defined in libc, libm or libdl cannot be redefined in a BaCon program, most notorious
being:
exit, index, y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl, dlopen, dlsym, dlclose.
Internal symbols and macro definitions cannot be reused. These start with '__b2c_'.
All symbols mentioned in the paragraph "Reserved Names" of any C manual cannot be redefined.

Appendix D: details on string optimization in BaCon

As BaCon is a plain Basic-to-C converter, the resulting code depends on the C implementation of
strings, which, in fact, comes down to the known concept of character arrays. A string is nothing
more than a series of values in memory which ends with a '0' value.
Plain C code is notorious for its bad performance on strings, especially when it needs to calculate
the length of a string. Usually, the bytes in memory are verified until the terminating '0' value is
encountered. For large strings this will take a considerable amount of time, especially in repetitive
operations.
In the ongoing attempt to improve the performance of string operations, several approaches for the
BaCon project have been investigated. The below report is a short summary of techniques which
were tried.

Different binary layout
A common implementation stores the actual string length in the beginning of the string. This means
that, for example, the first 4 bytes contain the length of the string, and the next 4 bytes contain the
size of the buffer holding the string. (This would limit the size of the string to 4294967295 bytes
(4Gb), which, for most purposes, should be enough.) After that, the actual characters of the string
itself are stored.

b1 b2 b3 b4 l1 l2 l3 l4 char1 char2 char<n>

String length Buffer length Actual bytes of the string

Programming languages like Pascal and Basic usually implement their strings this way. They
change the binary layout of the actual string, where, as mentioned, the first 8 bytes contain meta
information about length and buffer size.
For BaCon this seems a promising approach, however, as BaCon is a Basic-to-C converter, it makes
use of the string functions provided by libc. I am referring to functions like printf, strcat, strcpy and
friends. If strings are being fed to standard C functions like these, then this would cause
unpredictable results. The libc string functions always assume character arrays in a correct format,
otherwise they will not work properly - encountering binary values would cause printf to print
garbage on the screen, for example.
Now, it is possible to add a default offset of 8 bytes to the beginning of the memory address to
overcome this problem. However, we do not know in advance what type of string comes in. For
example, the used string very well may contain a string literal. This is plain text hard coded in the
BaCon program.
PRINT "Hello" & world$
In this example, both a string literal and also a memory address are used. Clearly, such string literal

does not have the 8 bytes offset with meta information. So how can we check whether a string
consists of a string literal, or whether it contains a memory address with the 8 byte offset?
I will come back to the concept of using a pre-buffer shortly.

Hash table
Another idea is to use hash values paired with the string length. The approach is to take the actual
memory address of a string, which is a unique value. This unique memory address then can be put
into a hash table which also can store a string length value (key-value store).
For performance reasons it would be nice if the table would provide values in a sequence starting
from 1 to have indexes available for an array. This is called a “minimal” hash.
Furthermore, as we do not know in advance how many memory addresses the BaCon program is
going to use, the hash table should be able to grow and shrink dynamically.
When it comes to performance, it turns out that has tables are too slow. The implementations of a
dynamic hash table often make use of linked lists, and the unavoidable memory inserts and
deletions simply take too much time. Eventually, it was established that they take more time than a
string length calculation.

Pointer swap
In BaCon, all string operating functions make use of a temporary buffer to store their (intermediate)
results. This is to ensure that nested string functions can pass their results to a higher level.
text$ = MID$("Goodbye, Hello", 9) & CHR$(32) & RIGHT$("The World", 5)

The above example concatenates three string operations into one resulting string. The functions
MID$, CHR$ and RIGHT$ first will store their result into temporary buffers, which then are passed
to the '&' operator, which, in its turn, stores the result of the concatenation into another temporary
buffer. The final result then is assigned to the variable 'text$'. The assignment is performed by
copying the contents from the temporary buffer to the variable 'text$'.
So, instead of copying the result into a variable, it also is possible to swap the memory addresses of
the variable and the temporary buffer. The variable 'text$' will point to the result, and the contents
of the temporary buffer will be changed to the previous character array of the variable. And because
the buffer is temporary, it is going to be overwritten anyway in a next string operation, so there's no
need to care about that.
This technique of pointer swapping will save some time, because it avoids a needless copy of bytes
from one memory area to another. Even though it does not help us with string length calculation, it
can help to improve the performance of string operations.

Memory pool
As strings are stored in memory, it sometimes can be a good idea to allocate a block of memory
before the actual program starts. Then a private function to share and administer can assign parts of
that allocated memory to the program. This could save time, because the real memory allocation on
the heap already took place, and the private memory allocation simply has to administer small
chunks.
But it only saves time in case a lot of subsequent allocations and frees take place in the program. In
BaCon, this is not the case. Sure, string variables need to have memory allocated and local variables
need to be freed. But a test setup shows that a good private memory administration not only is
difficult to implement, but also that a very basic version of such administration already is slower
than the allocations from libc (malloc, calloc).
The conclusion of this approach was that it would improve performance only in a situation where
there is a huge amount of memory allocations each claiming large blocks of memory from the heap.

Static character pointers
When using character pointers in functions, it is a good idea to declare them as static. Such pointers
keep their value, e.g. the memory address they are pointing to, so the next time when the function is
called, the pointer still points to the allocated memory. Therefore, there is no need to free a pointer
at the end of a function, or to allocate new memory when entering the function. This will save a lot
of system calls and kernel activity.
Note that it may be needed to set the memory of the string to an empty string at the beginning of the
function.
Also note that because static pointers always will point to the same memory, recursive functions
may not work properly. So in each level of recursion, the same memory is overwritten.
The technique of static pointers is partly implemented in BaCon: static pointers are used for string
variables and string arrays which get their value assigned at declaration time. This technique is not
suitable for regular string variables, because of the aforementioned problems with recursion.

Using a pre-buffer
The last technique to discuss, which actually has been implemented, is using a pre-buffer. It is
similar to the binary layout discussed earlier. In this approach, a block of memory is allocated, of
which the first bytes contain meta information about length and buffer size. However, the returned
pointer itself is a pointer to the start of the actual string. The benefit of this is that the string
functions from libc will work properly, because they see the actual string.
As mentioned, this concept is used in BaCon. However, there are a couple of problems which need
to be solved.
First of all, how do we know if an incoming string already uses a pre-buffer?
PRINT a$ & b$ & c$

In this example, we have three variables. If one of the variables does not have a pre-buffer, and
BaCon likes to look into it, then a crash will occur (segfault). BaCon cannot simply look into
memory which is not allocated.
To solve this problem, we have to think of a trick. As mentioned before, variables point to memory
addresses which contain data for the string. The memory addresses themselves are allocated by libc
functions like 'malloc' and 'calloc'. Now, we have to realize that such memory allocations always
return an address which is aligned to 8 or 16 bytes (depending on architecture). Maybe, on some
exotic platforms, it is 4 bytes or 32 bytes. But the point is, the returned memory addresses
themselves always are even numbers.
So, if a memory address returned by malloc/calloc is an even number, we simply state that such
address does not have a pre-buffer.
Therefore, an internal function is implemented, which will transform a regular even memory
address for a string in such a way, that a pre-buffer is present, and that the returned address is an
odd number. So in the BaCon implementation, when performing string operations, it always can be
assumed that an odd memory address for a string has a pre-buffer present.
String operations then can quickly fetch information from this pre-buffer, saving time which
otherwise would have been needed for length calculations.

<n> bytes 1 2 3 4 1 2 3 4 1 2 3 4 1 byte <n> bytes

Left buffer String length Size right
buffer

Size left
buffer

Not used Right buffer

<------- area containing metadata -------> Actual string data

---> Returned pointer

The above picture represents the new layout. Meta information is stored in an area which floats
freely between two memory buffers. The returned pointer is the start of the right buffer which
contains the actual string data. The left buffer is used for string concatenations, to insert text before
an existing string, which allows a very fast concatenation of data (this works by first moving the
area with meta data to the left and then inserting the text).
Then, the next problem is string literals (again).
PRINT a$ & "Hello world" & c$

A string literal is put into the text memory segment during compile time. The generated C program,
created by BaCon, uses addresses in this segment to obtain the string literal. The problem is that
these addresses for string literals maybe be even, or odd.
So, simply from the fact that a memory address is odd or even, we cannot see if there is a pre-
buffer. In fact, if we try to store information to such pre-buffer, a crash will occur. String literals in
the text segment reside in a certain memory area, which is read-only. While the addresses for string
variables in the data segment reside in a read-write part in memory.
To solve this problem, BaCon will store the lowest and highest memory address of the odd
addresses created by itself in global variables. Then, to check for a pre-buffer, it also must include a
range check: the address itself should not only be an odd number, it also should lie in between the
minimum and maximum stored. This way, it can be assured that the odd address really is a memory
address, and not some address in the text segment of the program.
The last problem is the 'strtok' function from libc. BaCon uses this function only in the FOR..IN
statement.
data$ = "Hello World"

FOR x$ IN data$

The 'strtok' function splits up a string into pieces and returns a memory address to the next piece. It
therefore can return an address which is odd and which lies in the minimum/maximum range.
In BaCon, this problem is solved by simply re-implementing the FOR..IN statement without the use
of 'strtok'.

This documentation © by Peter van Eerten.
Please report errors to: REVERSE$("gro.retrevnoc-cisab@retep")
Created with LibreOffice 7.3.7.2
Back to top of document

http://www.libreoffice.org/

	BaCon 4.7.2 documentation
	Introduction
	BaCon usage and parameters
	General syntax
	Mathematics, variables
	Equations
	The BETWEEN and BEYOND keywords
	Indexed arrays
	Declaration of static arrays
	Declaration of dynamic arrays
	Dimensions
	Passing arrays to functions or subs
	Returning arrays from functions

	Associative arrays
	Declaration
	Relations, lookups, keys
	Basic logic programming

	Records
	Declaration
	Arrays of records
	Passing records to functions or subs
	Returning records from functions

	Strings by value or by reference
	ASCII, Unicode, UTF8
	Binary trees
	Creating and linking to libraries created with BaCon
	Step 1: create a library
	Step 2: compile the library
	Step 3: copy library to a system path
	Step 4: update linker cache
	Step 5: demonstration program
	Step 6: compile and link
	Remarks

	Creating internationalization files
	Step 1: create program
	Step 2: compile program
	Step 3: create catalog file
	Step 4: add translations
	Step 5: create object file
	Step 6: install
	Step 7: setup Unix environment

	Networking
	TCP
	UDP
	BROADCAST
	MULTICAST
	SCTP

	TLS secured network connections
	Ramdisks and memory streams
	Delimited strings
	Regular expressions
	Error trapping, error catching and debugging
	Notes on transcompiling
	Using the BaCon spartanic editor (BaSE)
	Support for GUI programming
	Enabling GUI functions
	Defining the GUI
	Setting properties
	Entering the mainloop
	Defining helper functions
	Using native functions

	Overview of BaCon statements and functions
	ABS
	ACCEPT
	ACOS
	ADDRESS
	ALARM
	ALIAS
	ALIGN$
	AMOUNT
	AND
	APPEND
	APPEND$
	ARGUMENT$
	ASC
	ASIN
	ATN
	ATN2
	B64DEC$
	B64ENC$
	BAPPEND
	BASENAME$
	BIN$
	BIT
	BLOAD
	BREAK
	BSAVE
	BYTELEN
	CA$
	CALL
	CATCH
	CEIL
	CERTIFICATE
	CHANGE$
	CHANGEDIR
	CHOP$
	CHR$
	CIPHER$
	CL$
	CLASS
	CLEAR
	CLOSE
	CMDLINE
	CN$
	COIL$
	COLLAPSE$
	COLLECT
	COLOR
	COLUMNS
	CONCAT$
	CONST
	CONTINUE
	COPY
	COS
	COUNT
	CR$
	CURDIR$
	CURSOR
	CUT$
	DATA
	DAY
	DEC
	DECLARE
	DECR
	DEF FN
	DEG
	DEL$
	DELETE
	DELIM$
	DIRNAME$
	DLE$
	DO
	DOTIMES
	EDITBOM$
	EL$
	END
	ENDFILE
	ENUM
	EPRINT
	EQ
	EQUAL
	ERR$
	ERROR
	ESCAPE$
	EVAL
	EVEN
	EXCHANGE$
	EXEC$
	EXIT
	EXP
	EXPLODE$
	EXTRACT$
	FALSE
	FILEEXISTS
	FILELEN
	FILETIME
	FILETYPE
	FILL$
	FIND
	FIRST$
	FLATTEN$
	FLOOR
	FOR
	FORK
	FP
	FREE
	FUNCTION
	GETBYTE
	GETENVIRON$
	GETFILE
	GETKEY
	GETLINE
	GETPEER$
	GETX / GETY
	GLOBAL
	GOSUB
	GOTO
	GOTOXY
	GUIDEFINE
	GUIEVENT$
	GUIFN
	GUIGET
	GUISET
	GUIWIDGET
	HASBOM
	HASDELIM
	HASH
	HEAD$
	HEX$
	HOST$
	HOSTNAME$
	HOUR
	IF
	IIF / IIF$
	IMPORT
	INBETWEEN$
	INCLUDE
	INCR
	INDEX
	INDEX$
	INPUT
	INSERT$
	INSTR
	INSTRREV
	INTL$
	INVERT
	ISASCII
	ISFALSE
	ISKEY
	ISTOKEN
	ISTRUE
	ISUTF8
	JOIN
	LABEL
	LAST$
	LCASE$
	LEFT$
	LEN
	LET
	LINENO
	LOAD$
	LOCAL
	LOG
	LOOKUP
	LOOP
	LOOP$
	MAKEDIR
	MAP
	MATCH
	MAX / MAX$
	MAXNUM
	MAXRANDOM
	ME$
	MEMCHECK
	MEMORY
	MEMREWIND
	MEMTELL
	MERGE$
	MID$
	MIN / MIN$
	MINUTE
	MOD
	MONTH
	MONTH$
	MYPID
	NE
	NL$
	NNTL$
	NOT
	NOW
	NRKEYS
	OBTAIN$
	ODD
	ON
	OPEN
	OPTION
	OR
	OS$
	OUTBETWEEN$
	PARSE
	PEEK
	PI
	POKE
	POW
	PRAGMA
	PRINT
	PROPER$
	PROTO
	PULL
	PUSH
	PUTBYTE
	PUTLINE
	RAD
	RANDOM
	READ
	READLN
	REALPATH$
	REAP
	RECEIVE
	RECORD
	REDIM
	REGEX
	REGLEN
	RELATE
	REM
	RENAME
	REPEAT
	REPLACE$
	RESIZE
	RESTORE
	RESUME
	RETURN
	RETVAL
	REV$
	REVERSE$
	REWIND
	RIGHT$
	RIP$
	RND
	ROL
	ROR
	ROTATE$
	ROUND
	ROWS
	RUN
	RUN$
	SAVE
	SCREEN
	SCROLL
	SEARCH
	SECOND
	SEED
	SEEK
	SELECT
	SEND
	SETENVIRON
	SETSERIAL
	SGN
	SIGNAL
	SIN
	SIZEOF
	SLEEP
	SORT
	SORT$
	SOURCE$
	SP
	SPC$
	SPLIT
	SQR
	STOP
	STR$
	SUB
	SUM / SUMF
	SWAP
	SYSTEM
	TAB$
	TAIL$
	TALLY
	TAN
	TELL
	TEXTDOMAIN
	TIMER
	TIMEVALUE
	TOASCII$
	TOKEN$
	TRACE
	TRAP
	TREE
	TRUE
	TYPE
	TYPEOF$
	UBOUND
	UCASE$
	UCS
	ULEN
	UNESCAPE$
	UNFLATTEN$
	UNIQ$
	USEC
	USEH
	UTF8$
	VAL
	VAR
	VERIFY
	VERSION$
	WAIT
	WALK$
	WEEK
	WEEKDAY$
	WHERE
	WHILE
	WITH
	WRITELN
	YEAR

	Appendix A: Runtime error codes
	Appendix B: standard POSIX variables
	Appendix C: reserved keywords and functions
	Appendix D: details on string optimization in BaCon
	Different binary layout
	Hash table
	Pointer swap
	Memory pool
	Static character pointers
	Using a pre-buffer

